No Arabic abstract
While spin textures in materials exhibiting zero net magnetization, such as antiferromagnetic domain walls (DWs), have attracted much interest lately due to their robustness against external magnetic noise, their generic detection via conventional magnetometry remains a challenging task. Here, we propose quantum relaxometry as a new route to image spin textures by probing the collective spin modes harbored by them. We investigate the Goldstone modes hosted by an antiferromagnetic domain wall and assess the relaxation rate of a quantum-spin sensor interacting with them. We show that such modes can be detected via relaxometry in some common antiferromagnets. Moreover, based on symmetry considerations, we propose a simple protocol to probe the individual dynamics of each mode.
Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnetic spin textures can be imaged by probing the magnetic noise they locally produce via thermal populations of magnons. To this end, we perform nanoscale, all-optical relaxometry with a scanning quantum sensor based on a single nitrogen-vacancy (NV) defect in diamond. Magnetic noise is detected through an increase of the spin relaxation rate of the NV defect, which results in an overall reduction of its photoluminescence signal under continuous laser illumination. As a proof-of-concept, the efficiency of the method is demonstrated by imaging various spin textures in synthetic antiferromagnets, including domain walls, spin spirals and antiferromagnetic skyrmions. This imaging procedure could be extended to a large class of intrinsic antiferromagnets and opens up new opportunities for studying the physics of localized spin wave modes for magnonics.
Using focused electron-beam-induced deposition (FEBID), we fabricate vertical, platinum-coated cobalt nanowires with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, the presence of which we investigate using X-ray Magnetic Circular Dichroism (XMCD) coupled to PhotoEmission Electron Microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the X-ray beam produce an extended wire shadow which we use to recover the wires magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall (DW) without direct imaging of the nanowire.
A flat band in fermionic system is a dispersionless single-particle state with a diverging effective mass and nearly zero group velocity. These flat bands are expected to support exotic properties in the ground state, which might be important for a wide range of promising physical phenomena. For many applications it is highly desirable to have such states in Dirac materials, but so far they have been reported only in non-magnetic Dirac systems. In this work we propose a realization of topologically protected spin-polarized flat bands generated by domain walls in planar magnetic topological insulators. Using first-principles material design we suggest a family of intrinsic antiferromagnetic topological insulators with an in-plane sublattice magnetization and a high Neel temperature. Such systems can host domain walls in a natural manner. For these materials, we demonstrate the existence of spin-polarized flat bands in the vicinity of the Fermi level and discuss their properties and potential applications.
Polarization, denoting the precession direction with respect to the background magnetization, is an intrinsic degree of freedom of spin wave. Using magnetic textures to control the spin wave polarization is fundamental and indispensable toward reprogrammable polarization-based magnonics. Here, we show that due to the intrinsic cubic anisotropy, a $90^circ$ antiferromagnetic domain wall naturally acts as a spin wave retarder (wave-plate). Moreover, for a $90^circ$ domain wall pair developed by introducing a second domain in a homogenous antiferromagnetic wire, the sign of retarding effect can be flipped by simply switching the direction of the intermediate domain. The intimate connection between rich states of magnetic domains and the spin wave polarization in cubic anisotropic systems, offers new possibilities in constructing purely magnetic logic devices.
The scalability of quantum networks based on solid-state spin qubits is hampered by the short range of natural spin-spin interactions. Here, we propose a scheme to entangle distant spin qubits via the soft modes of an antiferromagnetic domain wall (DW). As spin qubits, we focus on quantum impurities (QIs) placed in the vicinity of an insulating antiferromagnetic thin film. The low-energy modes harbored by the DW are embedded in the antiferromagnetic bulk, whose intrinsic spin-wave dynamics have a gap that can exceed the THz range. By setting the QI frequency and the temperature well within the bulk gap, we focus on the dipolar interaction between the QI and two soft modes localized at the DW. One is a string-like mode associated with transverse displacements of the DW position, while the dynamics of the other, corresponding to planar rotations of the Neel order parameter, constitute a spin superfluid. By choosing the geometry in which the QI does not couple to the string mode, we use an external magnetic field to control the gap of the spin superfluid and the qubit-qubit coupling it engenders. We suggest that a tunable micron-range coherent coupling between qubits can be established using common antiferromagnetic materials.