No Arabic abstract
Polarization, denoting the precession direction with respect to the background magnetization, is an intrinsic degree of freedom of spin wave. Using magnetic textures to control the spin wave polarization is fundamental and indispensable toward reprogrammable polarization-based magnonics. Here, we show that due to the intrinsic cubic anisotropy, a $90^circ$ antiferromagnetic domain wall naturally acts as a spin wave retarder (wave-plate). Moreover, for a $90^circ$ domain wall pair developed by introducing a second domain in a homogenous antiferromagnetic wire, the sign of retarding effect can be flipped by simply switching the direction of the intermediate domain. The intimate connection between rich states of magnetic domains and the spin wave polarization in cubic anisotropic systems, offers new possibilities in constructing purely magnetic logic devices.
A flat band in fermionic system is a dispersionless single-particle state with a diverging effective mass and nearly zero group velocity. These flat bands are expected to support exotic properties in the ground state, which might be important for a wide range of promising physical phenomena. For many applications it is highly desirable to have such states in Dirac materials, but so far they have been reported only in non-magnetic Dirac systems. In this work we propose a realization of topologically protected spin-polarized flat bands generated by domain walls in planar magnetic topological insulators. Using first-principles material design we suggest a family of intrinsic antiferromagnetic topological insulators with an in-plane sublattice magnetization and a high Neel temperature. Such systems can host domain walls in a natural manner. For these materials, we demonstrate the existence of spin-polarized flat bands in the vicinity of the Fermi level and discuss their properties and potential applications.
In easy-plane ferromagnets, all magnetic dynamics are restricted in a specific plane, and the domain wall becomes massive instead of gyroscopic. Here we show that the interaction between domain wall and spin wave packet in easy-plane ferromagnets takes analogy to two massive particles colliding via attraction. Due to mutual attraction, the penetration of spin wave packet leads to backward displacement of the domain wall, and further the penetration of continuous spin wave leads to constant velocity of domain wall. The underlying temporary exchange of momentum, instead of permanent transfer of linear and angular momenta, provides a new paradigm in magnonically driving domain wall.
Coupling different physical properties is a fascinating subject of physics. Already well-known are the multiferroics which show properties of ferroelectrics and magnets. But ferroelectricity by itself also entails the bulk photovoltaic effect, a light-matter interaction which generates dc currents. Here we propose a magnetic photogalvanic effect that couples the magnetism to the light-matter interaction. This phenomenon emerges from the $mathbf{k}$ to $mathbf{-k}$ symmetry-breaking in the band structure and does not require a static polarization. It is distinct from other known bulk photovoltaic mechanisms such as the shift current. We demonstrate such phenomena in a newly discovered layered magnetic insulator CrI$_3$. A record photoconductivity response (more than 200 $mu A V^{-2} $) is generated under the irradiation of a visible light in the antiferromagnetic phase. The current can be reversed and switched by controllable magnetic phase transitions. Our work paves a new route for photovoltaic and optoelectronic devices and provides a sensitive probe for the magnetic transition.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange interaction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.