Do you want to publish a course? Click here

Intrusion Detection Systems for Networked Unmanned Aerial Vehicles: A Survey

330   0   0.0 ( 0 )
 Added by Gaurav Choudhary
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Unmanned Aerial Vehicles (UAV)-based civilian or military applications become more critical to serving civilian and/or military missions. The significantly increased attention on UAV applications also has led to security concerns particularly in the context of networked UAVs. Networked UAVs are vulnerable to malicious attacks over open-air radio space and accordingly, intrusion detection systems (IDSs) have been naturally derived to deal with the vulnerabilities and/or attacks. In this paper, we briefly survey the state-of-the-art IDS mechanisms that deal with vulnerabilities and attacks under networked UAV environments. In particular, we classify the existing IDS mechanisms according to information gathering sources, deployment strategies, detection methods, detection states, IDS acknowledgment, and intrusion types. We conclude this paper with research challenges, insights, and future research directions to propose a networked UAV-IDS system which meets required standards of effectiveness and efficiency in terms of the goals of both security and performance.



rate research

Read More

The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate the more that $45 Billion market value of UAV usage. In this survey, we present UAV civil applications and their challenges. We also discuss current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including: charging challenges, collision avoidance and swarming challenges, and networking and security related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.
Closed-loop control systems employ continuous sensing and actuation to maintain controlled variables within preset bounds and achieve the desired system output. Intentional disturbances in the system, such as in the case of cyberattacks, can compromise reachability of control goals, and in several cases jeopardize safety. The increasing connectivity and exposure of networked control to external networks has enabled attackers to compromise these systems by exploiting security vulnerabilities. Attacks against safety-critical control loops can not only drive the system over a trajectory different from the desired, but also cause fatal consequences to humans. In this paper we present a physics-based Intrusion Detection System (IDS) aimed at increasing the security in control systems. In addition to conventional process state estimation for intrusion detection, since the controller cannot be trusted, we introduce a controller state estimator. Additionally, we make our detector context-aware by utilizing sensor measurements from other control loops, which allows to distinguish and characterize disturbances from attacks. We introduce adaptive thresholding and adaptive filtering as means to achieve context-awareness. Together, these methodologies allow detection and localization of attacks in closed-loop controls. Finally, we demonstrate feasibility of the approach by mounting a series of attacks against a networked Direct Current (DC) motor closed-loop speed control deployed on an ECU testbed, as well as on a simulated automated lane keeping system. Among other application domains, this set of approaches is key to support security in automotive systems, and ultimately increase road and passenger safety.
Many current approaches to the design of intrusion detection systems apply feature selection in a static, non-adaptive fashion. These methods often neglect the dynamic nature of network data which requires to use adaptive feature selection techniques. In this paper, we present a simple technique based on incremental learning of support vector machines in order to rank the features in real time within a streaming model for network data. Some illustrative numerical experiments with two popular benchmark datasets show that our approach allows to adapt to the changes in normal network behaviour and novel attack patterns which have not been experienced before.
Astronomical adaptive optics systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept, which relies on the UAV being able to measure its precise relative position. We investigate the adaptive optics performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8~m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar adaptive optics systems.
83 - Yuwei Li , Wanli Ni , Hui Tian 2020
This paper investigates the problem of resource allocation for joint communication and radar sensing system on rate-splitting multiple access (RSMA) based unmanned aerial vehicle (UAV) system. UAV simultaneously communicates with multiple users and probes signals to targets of interest to exploit cooperative sensing ability and achieve substantial gains in size, cost and power consumption. By virtue of using linearly precoded rate splitting at the transmitter and successive interference cancellation at the receivers, RSMA is introduced as a promising paradigm to manage interference as well as enhance spectrum and energy efficiency. To maximize the energy efficiency of UAV networks, the deployment location and the beamforming matrix are jointly optimized under the constraints of power budget, transmission rate and approximation error. To solve the formulated non-convex problem efficiently, we decompose it into the UAV deployment subproblem and the beamforming optimization subproblem. Then, we invoke the successive convex approximation and difference-of-convex programming as well as Dinkelbach methods to transform the intractable subproblems into convex ones at each iteration. Next, an alternating algorithm is designed to solve the non-linear and non-convex problem in an efficient manner, while the corresponding complexity is analyzed as well. Finally, simulation results reveal that proposed algorithm with RSMA is superior to orthogonal multiple access and power-domain non-orthogonal multiple access in terms of power consumption and energy efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا