Do you want to publish a course? Click here

On consistent estimation of the missing mass

134   0   0.0 ( 0 )
 Added by Stefano Favaro
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Given $n$ samples from a population of individuals belonging to different types with unknown proportions, how do we estimate the probability of discovering a new type at the $(n+1)$-th draw? This is a classical problem in statistics, commonly referred to as the missing mass estimation problem. Recent results by Ohannessian and Dahleh citet{Oha12} and Mossel and Ohannessian citet{Mos15} showed: i) the impossibility of estimating (learning) the missing mass without imposing further structural assumptions on the type proportions; ii) the consistency of the Good-Turing estimator for the missing mass under the assumption that the tail of the type proportions decays to zero as a regularly varying function with parameter $alphain(0,1)$. In this paper we rely on tools from Bayesian nonparametrics to provide an alternative, and simpler, proof of the impossibility of a distribution-free estimation of the missing mass. Up to our knowledge, the use of Bayesian ideas to study large sample asymptotics for the missing mass is new, and it could be of independent interest. Still relying on Bayesian nonparametric tools, we then show that under regularly varying type proportions the convergence rate of the Good-Turing estimator is the best rate that any estimator can achieve, up to a slowly varying function, and that minimax rate must be at least $n^{-alpha/2}$. We conclude with a discussion of our results, and by conjecturing that the Good-Turing estimator is an rate optimal minimax estimator under regularly varying type proportions.



rate research

Read More

81 - James Sharpnack 2019
When data is partially missing at random, imputation and importance weighting are often used to estimate moments of the unobserved population. In this paper, we study 1-nearest neighbor (1NN) importance weighting, which estimates moments by replacing missing data with the complete data that is the nearest neighbor in the non-missing covariate space. We define an empirical measure, the 1NN measure, and show that it is weakly consistent for the measure of the missing data. The main idea behind this result is that the 1NN measure is performing inverse probability weighting in the limit. We study applications to missing data and mitigating the impact of covariate shift in prediction tasks.
We propose a time-varying generalization of the Bradley-Terry model that allows for nonparametric modeling of dynamic global rankings of distinct teams. We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time and is applicable in sparse settings where the Bradley-Terry may not be fit. We obtain necessary and sufficient conditions for the existence and uniqueness of our estimator. We also derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting where the Bradley-Terry model is not necessarily the true data generating process. We thoroughly test the practical effectiveness of our model using both simulated and real world data and suggest an efficient data-driven approach for bandwidth tuning.
203 - Vincent Divol 2021
Persistence diagrams (PDs) are the most common descriptors used to encode the topology of structured data appearing in challenging learning tasks; think e.g. of graphs, time series or point clouds sampled close to a manifold. Given random objects and the corresponding distribution of PDs, one may want to build a statistical summary-such as a mean-of these random PDs, which is however not a trivial task as the natural geometry of the space of PDs is not linear. In this article, we study two such summaries, the Expected Persistence Diagram (EPD), and its quantization. The EPD is a measure supported on R 2 , which may be approximated by its empirical counterpart. We prove that this estimator is optimal from a minimax standpoint on a large class of models with a parametric rate of convergence. The empirical EPD is simple and efficient to compute, but possibly has a very large support, hindering its use in practice. To overcome this issue, we propose an algorithm to compute a quantization of the empirical EPD, a measure with small support which is shown to approximate with near-optimal rates a quantization of the theoretical EPD.
We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights become so corrupted that the averaged estimate shows very poor performance. We suggest a novel computationally efficient structure-adaptive procedure which simultaneously reconstructs a smooth manifold and estimates projections of the point cloud onto this manifold. The proposed approach iteratively refines the weights on each step, using the structural information obtained at previous steps. After several iterations, we obtain nearly oracle weights, so that the final estimates are nearly efficient even in the presence of relatively large noise. In our theoretical study we establish tight lower and upper bounds proving asymptotic optimality of the method for manifold estimation under the Hausdorff loss, provided that the noise degrades to zero fast enough.
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class of generators and discriminators. We prove that the resulting density estimate converges to $p^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(log n/n)^{2beta/(2beta+d)}$ where $n$ is the sample size and $beta$ determines the smoothness of $p^*.$ This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $beta>d/2.$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا