Do you want to publish a course? Click here

Rates of convergence for density estimation with GANs

87   0   0.0 ( 0 )
 Added by Nikita Puchkin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class of generators and discriminators. We prove that the resulting density estimate converges to $p^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(log n/n)^{2beta/(2beta+d)}$ where $n$ is the sample size and $beta$ determines the smoothness of $p^*.$ This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $beta>d/2.$

rate research

Read More

We aim at estimating the invariant density associated to a stochastic differential equation with jumps in low dimension, which is for $d=1$ and $d=2$. We consider a class of jump diffusion processes whose invariant density belongs to some Holder space. Firstly, in dimension one, we show that the kernel density estimator achieves the convergence rate $frac{1}{T}$, which is the optimal rate in the absence of jumps. This improves the convergence rate obtained in [Amorino, Gloter (2021)], which depends on the Blumenthal-Getoor index for $d=1$ and is equal to $frac{log T}{T}$ for $d=2$. Secondly, we show that is not possible to find an estimator with faster rates of estimation. Indeed, we get some lower bounds with the same rates ${frac{1}{T},frac{log T}{T}}$ in the mono and bi-dimensional cases, respectively. Finally, we obtain the asymptotic normality of the estimator in the one-dimensional case.
Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and topological features from point clouds. In this context, the distance to a probability measure (DTM) has been introduced by Chazal et al. (2011) as a robust alternative to the distance a compact set. In practice, the DTM can be estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes. In particular, we show that the rates of convergence of the DTEM directly depends on the regularity at zero of a particular quantile fonction which contains some local information about the geometry of the support. This quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem. Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are tight.
We provide statistical theory for conditional and unconditional Wasserstein generative adversarial networks (WGANs) in the framework of dependent observations. We prove upper bounds for the excess Bayes risk of the WGAN estimators with respect to a modified Wasserstein-type distance. Furthermore, we formalize and derive statements on the weak convergence of the estimators and use them to develop confidence intervals for new observations. The theory is applied to the special case of high-dimensional time series forecasting. We analyze the behavior of the estimators in simulations based on synthetic data and investigate a real data example with temperature data. The dependency of the data is quantified with absolutely regular beta-mixing coefficients.
This paper aims to build an estimate of an unknown density of the data with measurement error as a linear combination of functions from a dictionary. Inspired by the penalization approach, we propose the weighted Elastic-net penalized minimal $ell_2$-distance method for sparse coefficients estimation, where the adaptive weights come from sharp concentration inequalities. The optimal weighted tuning parameters are obtained by the first-order conditions holding with a high probability. Under local coherence or minimal eigenvalue assumptions, non-asymptotical oracle inequalities are derived. These theoretical results are transposed to obtain the support recovery with a high probability. Then, some numerical experiments for discrete and continuous distributions confirm the significant improvement obtained by our procedure when compared with other conventional approaches. Finally, the application is performed in a meteorology data set. It shows that our method has potency and superiority of detecting the shape of multi-mode density compared with other conventional approaches.
The emergence of big data has led to a growing interest in so-called convergence complexity analysis, which is the study of how the convergence rate of a Monte Carlo Markov chain (for an intractable Bayesian posterior distribution) scales as the underlying data set grows in size. Convergence complexity analysis of practical Monte Carlo Markov chains on continuous state spaces is quite challenging, and there have been very few successful analyses of such chains. One fruitful analysis was recently presented by Qin and Hobert (2021b), who studied a Gibbs sampler for a simple Bayesian random effects model. These authors showed that, under regularity conditions, the geometric convergence rate of this Gibbs sampler converges to zero as the data set grows in size. It is shown herein that similar behavior is exhibited by Gibbs samplers for more general Bayesian models that possess both random effects and traditional continuous covariates, the so-called mixed models. The analysis employs the Wasserstein-based techniques introduced by Qin and Hobert (2021b).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا