No Arabic abstract
We study the ground state and low-energy subgap excitations of a finite wire of a time-reversal-invariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling $S_z= pm 1/2$ is distributed with fractions $pm 1/4$ localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy $E$ of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states.We discuss the effect of a Zeeman coupling $Delta_Z$ on one of the ends of the chain only. For $Delta_Z<E$, the energy difference of excitations with opposite spin orientation is $Delta_Z/2$, consistent with a spin projection $pm 1/4$. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.
We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term $t$, a chemical potential $mu$, an extended $s$-wave pairing $Delta$ and spin-orbit coupling $lambda$. We show that for $|Delta|=|lambda|$, $mu=t=0$, the model can be solved exactly defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we correct some statements related with the so called time-reversal anomaly. Addition of a small hopping term for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains with numerical results %for a small chain obtaining good agreement.
We study the scattering of the Dirac electrons by a point-like nonmagnetic impurity on the surface of a topological insulator, driven by a time-periodic gate voltage. It is found that, due to the doublet degenerate crossing points of different Floquet sidebands, resonant backscattering can happen for the surface electrons, even without breaking the time-reversal (TR) symmetry of the topological surface states (TSSs). The energy spectrum is reshuffled in a way quite different from that for the circularly polarized light, so that new features are exhibited in the Friedel oscillations of the local charge and spin density of states. Although the electron scattering is dramatically modified by the driving voltage, the $1/rho$ scale law of the spin precession persists for the TSSs. The TR invariant backscattering provides a possible way to engineer the Dirac electronic spectrum of the TSSs, without destroying the unique property of spin-momentum interlocking of the TSSs.
We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called $0-pi$ transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.
We show that harmonic driving of either the magnitude or the phase of the nearest-neighbor hopping amplitude in a p-wave superconducting wire can generate modes localized near the ends of the wire. The Floquet eigenvalues of these modes can either be equal to $pm 1$ (which is known to occur in other models) or can lie near other values in complex conjugate pairs which is unusual; we call the latter anomalous end modes. All the end modes have equal probabilities of particles and holes. If the amplitude of driving is small, we observe an interesting bulk-boundary correspondence: the Floquet eigenvalues and the peaks of the Fourier transform of the end modes lie close to the Floquet eigenvalues and momenta at which the Floquet eigenvalues of the bulk system have extrema.
We find a new class of topological superconductors which possess an emergent time-reversal symmetry that is present only after projecting to an effective low-dimensional model. We show that a topological phase in symmetry class DIII can be realized in a noninteracting system coupled to an $s$-wave superconductor only if the physical time-reversal symmetry of the system is broken, and we provide three general criteria that must be satisfied in order to have such a phase. We also provide an explicit model which realizes the class DIII topological superconductor in 1D. We show that, just as in time-reversal invariant topological superconductors, the topological phase is characterized by a Kramers pair of Majorana fermions that are protected by the emergent time-reversal symmetry.