Do you want to publish a course? Click here

Catalogue of Andreev spectra and Josephson effects in structures with time-reversal-invariant topological superconductor wires

67   0   0.0 ( 0 )
 Added by Armando A. Aligia
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study all the possible different two terminal configurations of Josephson junctions containing wires of time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including combinations with an interacting quantum dot between both wires in the junction. We introduce simple effective Hamiltonians which explain the different qualitative behaviors obtained. We analyze a wide range of phenomena, including occurrence and quenching of the so called $0-pi$ transition, anomalous periodicity and jumps of the Josephson current as a function of the phase difference, and finite Josephson current in the absence of magnetic flux.



rate research

Read More

Time-reversal-invariant topological superconductor (TRITOPS) wires host Majorana Kramers pairs that have been predicted to mediate a fractional Josephson effect with $4pi$ periodicity in the superconducting phase difference. We explore the TRITOPS fractional Josephson effect in the presence of time-dependent `local mixing perturbations that instantaneously preserve time-reversal symmetry. Specifically, we show that just as such couplings render braiding of Majorana Kramers pairs non-universal, the Josephson current becomes either aperiodic or $2pi$-periodic (depending on conditions that we quantify) unless the phase difference is swept sufficiently quickly. We further analyze topological superconductors with $mathcal{T}^2 = +1$ time-reversal symmetry and reveal a rich interplay between interactions and local mixing that can be experimentally probed in nanowire arrays.
We theoretically study transport properties of voltage-biased one-dimensional superconductor--normal metal--superconductor tunnel junctions with arbitrary junction transparency where the superconductors can have trivial or nontrivial topology. Motivated by recent experimental efforts on Majorana properties of superconductor-semiconductor hybrid systems, we consider two explicit models for topological superconductors: (i) spinful p-wave, and (ii) spin-split spin-orbit-coupled s-wave. We provide a comprehensive analysis of the zero-temperature dc current $I$ and differential conductance $dI/dV$ of voltage-biased junctions with or without Majorana zero modes (MZMs). The presence of an MZM necessarily gives rise to two tunneling conductance peaks at voltages $eV = pm Delta_{mathrm{lead}}$, i.e., the voltage at which the superconducting gap edge of the lead aligns with the MZM. We find that the MZM conductance peak probed by a superconducting lead $without$ a BCS singularity has a non-universal value which decreases with decreasing junction transparency. This is in contrast to the MZM tunneling conductance measured by a superconducting lead $with$ a BCS singularity, where the conductance peak in the tunneling limit takes the quantized value $G_M = (4-pi)2e^2/h$ independent of the junction transparency. We also discuss the subharmonic gap structure, a consequence of multiple Andreev reflections, in the presence and absence of MZMs. Finally, we show that for finite-energy Andreev bound states (ABSs), the conductance peaks shift away from the gap bias voltage $eV = pm Delta_{mathrm{lead}}$ to a larger value set by the ABSs energy. Our work should have important implications for the extensive current experimental efforts toward creating topological superconductivity and MZMs in semiconductor nanowires proximity coupled to ordinary s-wave superconductors.
We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term $t$, a chemical potential $mu$, an extended $s$-wave pairing $Delta$ and spin-orbit coupling $lambda$. We show that for $|Delta|=|lambda|$, $mu=t=0$, the model can be solved exactly defining new fermion operators involving nearest-neighbor sites. The many-body ground state is four-fold degenerate due to the existence of two zero-energy modes localized exactly at the first and the last site of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results we correct some statements related with the so called time-reversal anomaly. Addition of a small hopping term for a chain with an even number of sites breaks the degeneracy and the ground state becomes unique with an even number of particles. We also consider a small magnetic field applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains with numerical results %for a small chain obtaining good agreement.
We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions. We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting leads that enable the topological nodal points in the spectrum of Andreev states. When the scattering matrix possesses time-reversal symmetry, the gap closing occurs at special stationary points that are topologically trivial as they carry vanishing Berry fluxes. In contrast, for the time-reversal broken case we find topological monopoles of the Berry curvature and corresponding phase transition between states with different Chern numbers. The latter is controlled by the structure of the scattering matrix that can be tuned by a magnetic flux piercing through the junction area in a three-terminal geometry. The topological regime of the system can be identified by nonlocal conductance quantization that we compute explicitly for a particular parametrization of the scattering matrix in the case where each reservoir is connected by a single channel.
We study the ground state and low-energy subgap excitations of a finite wire of a time-reversal-invariant topological superconductor (TRITOPS) with spin-orbit coupling. We solve the problem analytically for a long chain of a specific one-dimensional lattice model in the electron-hole symmetric configuration and numerically for other cases of the same model. We present results for the spin density of excitations in long chains with an odd number of particles. The total spin projection along the axis of the spin-orbit coupling $S_z= pm 1/2$ is distributed with fractions $pm 1/4$ localized at both ends, and shows even-odd alternation along the sites of the chain. We calculate the localization length of these excitations and find that it can be well approximated by a simple analytical expression. We show that the energy $E$ of the lowest subgap excitations of the finite chain defines tunneling and entanglement between end states.We discuss the effect of a Zeeman coupling $Delta_Z$ on one of the ends of the chain only. For $Delta_Z<E$, the energy difference of excitations with opposite spin orientation is $Delta_Z/2$, consistent with a spin projection $pm 1/4$. We argue that these physical features are not model dependent and can be experimentally observed in TRITOPS wires under appropriate conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا