Do you want to publish a course? Click here

Augmenting Stream Constraint Programming with Eventuality Conditions

215   0   0.0 ( 0 )
 Added by Jasper C.H. Lee
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Stream constraint programming is a recent addition to the family of constraint programming frameworks, where variable domains are sets of infinite streams over finite alphabets. Previous works showed promising results for its applicability to real-world planning and control problems. In this paper, motivated by the modelling of planning applications, we improve the expressiveness of the framework by introducing 1) the until constraint, a new construct that is adapted from Linear Temporal Logic and 2) the @ operator on streams, a syntactic sugar for which we provide a more efficient solving algorithm over simple desugaring. For both constructs, we propose corresponding novel solving algorithms and prove their correctness. We present competitive experimental results on the Missionaries and Cannibals logic puzzle and a standard path planning application on the grid, by comparing with Apt and Brands method for verifying eventuality conditions using a CP approach.



rate research

Read More

PDDL+ is an extension of PDDL that enables modelling planning domains with mixed discrete-continuous dynamics. In this paper we present a new approach to PDDL+ planning based on Constraint Answer Set Programming (CASP), i.e. ASP rules plus numerical constraints. To the best of our knowledge, ours is the first attempt to link PDDL+ planning and logic programming. We provide an encoding of PDDL+ models into CASP problems. The encoding can handle non-linear hybrid domains, and represents a solid basis for applying logic programming to PDDL+ planning. As a case study, we consider the EZCSP CASP solver and obtain promising results on a set of PDDL+ benchmark problems.
We developed and compared Constraint Programming (CP) and Quantum Annealing (QA) approaches for rolling stock optimisation considering necessary maintenance tasks. To deal with such problems in CP we investigated specialised pruning rules and implemented them in a global constraint. For the QA approach, we developed quadratic unconstrained binary optimisation (QUBO) models. For testing, we use data sets based on real data from Deutsche Bahn and run the QA approach on real quantum computers from D-Wave. Classical computers are used to run the CP approach as well as tabu search for the QUBO models. We find that both approaches tend at the current development stage of the physical quantum annealers to produce comparable results, with the caveat that QUBO does not always guarantee that the maintenance constraints hold, which we fix by adjusting the QUBO model in preprocessing, based on how close the trains are to a maintenance threshold distance.
101 - Amit Verma , Mark Lewis 2021
The broad applicability of Quadratic Unconstrained Binary Optimization (QUBO) constitutes a general-purpose modeling framework for combinatorial optimization problems and are a required format for gate array and quantum annealing computers. QUBO annealers as well as other solution approaches benefit from starting with a diverse set of solutions with local optimality an additional benefit. This paper presents a new method for generating a set of one-flip local optima leveraging constraint programming. Further, as demonstrated in experimental testing, analysis of the solution set allows the generation of soft constraints to help guide the optimization process.
Constraint programming (CP) is a paradigm used to model and solve constraint satisfaction and combinatorial optimization problems. In CP, problems are modeled with constraints that describe acceptable solutions and solved with backtracking tree search augmented with logical inference. In this paper, we show how quantum algorithms can accelerate CP, at both the levels of inference and search. Leveraging existing quantum algorithms, we introduce a quantum-accelerated filtering algorithm for the $texttt{alldifferent}$ global constraint and discuss its applicability to a broader family of global constraints with similar structure. We propose frameworks for the integration of quantum filtering algorithms within both classical and quantum backtracking search schemes, including a novel hybrid classical-quantum backtracking search method. This work suggests that CP is a promising candidate application for early fault-tolerant quantum computers and beyond.
We propose AllDiffPrecedence, a new global constraint that combines together an AllDifferent constraint with precedence constraints that strictly order given pairs of variables. We identify a number of applications for this global constraint including instruction scheduling and symmetry breaking. We give an efficient propagation algorithm that enforces bounds consistency on this global constraint. We show how to implement this propagator using a decomposition that extends the bounds consistency enforcing decomposition proposed for the AllDifferent constraint. Finally, we prove that enforcing domain consistency on this global constraint is NP-hard in general.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا