No Arabic abstract
PDDL+ is an extension of PDDL that enables modelling planning domains with mixed discrete-continuous dynamics. In this paper we present a new approach to PDDL+ planning based on Constraint Answer Set Programming (CASP), i.e. ASP rules plus numerical constraints. To the best of our knowledge, ours is the first attempt to link PDDL+ planning and logic programming. We provide an encoding of PDDL+ models into CASP problems. The encoding can handle non-linear hybrid domains, and represents a solid basis for applying logic programming to PDDL+ planning. As a case study, we consider the EZCSP CASP solver and obtain promising results on a set of PDDL+ benchmark problems.
We present a general approach to planning with incomplete information in Answer Set Programming (ASP). More precisely, we consider the problems of conformant and conditional planning with sensing actions and assumptions. We represent planning problems using a simple formalism where logic programs describe the transition function between states, the initial states and the goal states. For solving planning problems, we use Quantified Answer Set Programming (QASP), an extension of ASP with existential and universal quantifiers over atoms that is analogous to Quantified Boolean Formulas (QBFs). We define the language of quantified logic programs and use it to represent the solutions to different variants of conformant and conditional planning. On the practical side, we present a translation-based QASP solver that converts quantified logic programs into QBFs and then executes a QBF solver, and we evaluate experimentally the approach on conformant and conditional planning benchmarks. Under consideration for acceptance in TPLP.
We investigate the use of Answer Set Programming to solve variations of gossip problems, by modeling them as epistemic planning problems.
We present an explanation system for applications that leverage Answer Set Programming (ASP). Given a program P, an answer set A of P, and an atom a in the program P, our system generates all explanation graphs of a which help explain why a is true (or false) given the program P and the answer set A. We illustrate the functionality of the system using some examples from the literature.
Weighted Logic is a powerful tool for the specification of calculations over semirings that depend on qualitative information. Using a novel combination of Weighted Logic and Here-and-There (HT) Logic, in which this dependence is based on intuitionistic grounds, we introduce Answer Set Programming with Algebraic Constraints (ASP(AC)), where rules may contain constraints that compare semiring values to weighted formula evaluations. Such constraints provide streamlined access to a manifold of constructs available in ASP, like aggregates, choice constraints, and arithmetic operators. They extend some of them and provide a generic framework for defining programs with algebraic computation, which can be fruitfully used e.g. for provenance semantics of datalog programs. While undecidable in general, expressive fragments of ASP(AC) can be exploited for effective problem-solving in a rich framework. This work is under consideration for acceptance in Theory and Practice of Logic Programming.
Recently, the notions of subjective constraint monotonicity, epistemic splitting, and foundedness have been introduced for epistemic logic programs, with the aim to use them as main criteria respectively intuitions to compare different answer set semantics proposed in the literature on how they comply with these intuitions. In this note, we consider these three notions and demonstrate on some examples that they may be too strong in general and may exclude some desired answer sets respectively world views. In conclusion, these properties should not be regarded as mandatory properties that every answer set semantics must satisfy in general.