Do you want to publish a course? Click here

Quantum-accelerated constraint programming

89   0   0.0 ( 0 )
 Added by Kyle E. C. Booth
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Constraint programming (CP) is a paradigm used to model and solve constraint satisfaction and combinatorial optimization problems. In CP, problems are modeled with constraints that describe acceptable solutions and solved with backtracking tree search augmented with logical inference. In this paper, we show how quantum algorithms can accelerate CP, at both the levels of inference and search. Leveraging existing quantum algorithms, we introduce a quantum-accelerated filtering algorithm for the $texttt{alldifferent}$ global constraint and discuss its applicability to a broader family of global constraints with similar structure. We propose frameworks for the integration of quantum filtering algorithms within both classical and quantum backtracking search schemes, including a novel hybrid classical-quantum backtracking search method. This work suggests that CP is a promising candidate application for early fault-tolerant quantum computers and beyond.



rate research

Read More

We propose a new quantum state reconstruction method that combines ideas from compressed sensing, non-convex optimization, and acceleration methods. The algorithm, called Momentum-Inspired Factored Gradient Descent (texttt{MiFGD}), extends the applicability of quantum tomography for larger systems. Despite being a non-convex method, texttt{MiFGD} converges emph{provably} to the true density matrix at a linear rate, in the absence of experimental and statistical noise, and under common assumptions. With this manuscript, we present the method, prove its convergence property and provide Frobenius norm bound guarantees with respect to the true density matrix. From a practical point of view, we benchmark the algorithm performance with respect to other existing methods, in both synthetic and real experiments performed on an IBMs quantum processing unit. We find that the proposed algorithm performs orders of magnitude faster than state of the art approaches, with the same or better accuracy. In both synthetic and real experiments, we observed accurate and robust reconstruction, despite experimental and statistical noise in the tomographic data. Finally, we provide a ready-to-use code for state tomography of multi-qubit systems.
In this paper we study quantum algorithms for NP-complete problems whose best classical algorithm is an exponential time application of dynamic programming. We introduce the path in the hypercube problem that models many of these dynamic programming algorithms. In this problem we are asked whether there is a path from $0^n$ to $1^n$ in a given subgraph of the Boolean hypercube, where the edges are all directed from smaller to larger Hamming weight. We give a quantum algorithm that solves path in the hypercube in time $O^*(1.817^n)$. The technique combines Grovers search with computing a partial dynamic programming table. We use this approach to solve a variety of vertex ordering problems on graphs in the same time $O^*(1.817^n)$, and graph bandwidth in time $O^*(2.946^n)$. Then we use similar ideas to solve the travelling salesman problem and minimum set cover in time $O^*(1.728^n)$.
Recently, the makespan-minimization problem of compiling a general class of quantum algorithms into near-term quantum processors has been introduced to the AI community. The research demonstrated that temporal planning is a strong approach for a class of quantum circuit compilation (QCC) problems. In this paper, we explore the use of constraint programming (CP) as an alternative and complementary approach to temporal planning. We extend previous work by introducing two new problem variations that incorporate important characteristics identified by the quantum computing community. We apply temporal planning and CP to the baseline and extended QCC problems as both stand-alone and hybrid approaches. Our hybrid methods use solutions found by temporal planning to warm start CP, leveraging the ability of the former to find satisficing solutions to problems with a high degree of task optionality, an area that CP typically struggles with. The CP model, benefiting from inferred bounds on planning horizon length and task counts provided by the warm start, is then used to find higher quality solutions. Our empirical evaluation indicates that while stand-alone CP is only competitive for the smallest problems, CP in our hybridization with temporal planning out-performs stand-alone temporal planning in the majority of problem classes.
The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision $epsilon$, QPE requires $O(1)$ repetitions of circuits with depth $O(1/epsilon)$, whereas each expectation estimation subroutine within VQE requires $O(1/epsilon^{2})$ samples from circuits with depth $O(1)$. We propose a generalised VQE algorithm that interpolates between these two regimes via a free parameter $alphain[0,1]$ which can exploit quantum coherence over a circuit depth of $O(1/epsilon^{alpha})$ to reduce the number of samples to $O(1/epsilon^{2(1-alpha)})$. Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest.
The equivalence between the instructions used to define programs and the input data on which the instructions operate is a basic principle of classical computer architectures and programming. Replacing classical data with quantum states enables fundamentally new computational capabilities with scaling advantages for many applications, and numerous models have been proposed for realizing quantum computation. However, within each of these models, the quantum data are transformed by a set of gates that are compiled using solely classical information. Conventional quantum computing models thus break the instruction-data symmetry: classical instructions and quantum data are not directly interchangeable. In this work, we use a density matrix exponentiation protocol to execute quantum instructions on quantum data. In this approach, a fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state. Our demonstration relies on a 99.7% fidelity controlled-phase gate implemented using two tunable superconducting transmon qubits, which enables an algorithmic fidelity surpassing 90% at circuit depths exceeding 70. The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation, thereby enabling exponential speedup for a broad range of algorithms, including quantum principal component analysis, the measurement of entanglement spectra, and universal quantum emulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا