Do you want to publish a course? Click here

Code Design for Non-Coherent Detection of Frame Headers in Precoded Satellite Systems

73   0   0.0 ( 0 )
 Added by Farbod Kayhan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper we propose a simple method for generating short-length rate-compatible codes over $mathbb{Z}_M$ that are robust to non-coherent detection for $M$-PSK constellations. First, a greedy algorithm is used to construct a family of rotationally invariant codes for a given constellation. Then, by properly modifying such codes we obtain codes that are robust to non-coherent detection. We briefly discuss the optimality of the constructed codes for special cases of BPSK and QPSK constellations. Our method provides an upper bound for the length of optimal codes with a given desired non-coherent distance. We also derive a simple asymptotic upper bound on the frame error rate (FER) of such codes and provide the simulation results for a selected set of proposed codes. Finally, we briefly discuss the problem of designing binary codes that are robust to non-coherent detection for QPSK constellation.

rate research

Read More

Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this paper, we consider a high throughput satellite (HTS) system that employs BH in conjunction with precoding. In particular, we propose the concept of Cluster-Hopping (CH) that seamlessly combines the BH and precoding paradigms and utilize their individual competencies. The cluster is defined as a set of adjacent beams that are simultaneously illuminated. In addition, we propose an efficient time-space illumination pattern design, where we determine the set of clusters that can be illuminated simultaneously at each hopping event along with the illumination duration. We model the CH time-space illumination pattern design as an integer programming problem which can be efficiently solved. Supporting results based on numerical simulations are provided which validate the effectiveness of the proposed CH concept and time-space illumination pattern design.
Multibeam high throughput satellite (MB-HTS) systems will play a key role in delivering broadband services to a large number of users with diverse Quality of Service (QoS) requirements. This paper focuses on MB-HTS where the same spectrum is re-used by all user links and, in particular, we propose a novel user scheduling design capable to provide guarantees in terms of individual QoS requirements while maximizing the system throughput. This is achieved by precoding to mitigate mutual interference. The combinatorial optimization structure requires an extremely high cost to obtain the global optimum even with a reduced number of users. We, therefore, propose a heuristic algorithm yielding a good local solution and tolerable computational complexity, applicable for large-scale networks. Numerical results demonstrate the effectiveness of our proposed algorithm on scheduling many users with better sum throughput than the other benchmarks. Besides, the QoS requirements for all scheduled users are guaranteed.
In this paper we use a variation of simulated annealing algorithm for optimizing two-dimensional constellations with 32 signals. The main objective is to maximize the symmetric pragmatic capacity under the peak-power constraint. The method allows the joint optimization of constellation and binary labeling. We also investigate the performance of the optimized constellation over nonlinear satellite channel under additive white Gaussian noise. We consider the performance over systems with and without pre-distorters. In both cases the optimized constellations perform considerably better than the conventional Amplitude Phase Shift Keying (APSK) modulations, used in the current digital video broadcasting standard (DVB-S2) on satellite channels. Based on our optimized constellations, we also propose a new labeling for the 4+12+16-APSK constellation of the DVB-S2 standard which is Gray over all rings.
In this paper, we propose textit{selectively precoded polar (SPP) code}, built on top of Arikans capacity achieving polar codes. We provide the encoding and decoding scheme for SPP code. Simulation results show that for a target frame erasure rate (FER) of $mathbf{10^{-5}}$, a (128, 64) SPP code is just 0.23 dB away from the information theoretic limit at this blocklength. Further, it is also shown that such codes possess better distance properties compared to other contemporary polar code variants.
This paper focuses on controlling the absorbing set spectrum for a class of regular LDPC codes known as separable, circulant-based (SCB) codes. For a specified circulant matrix, SCB codes all share a common mother matrix, examples of which are array-based LDPC codes and many common quasi-cyclic codes. SCB codes retain the standard properties of quasi-cyclic LDPC codes such as girth, code structure, and compatibility with efficient decoder implementations. In this paper, we define a cycle consistency matrix (CCM) for each absorbing set of interest in an SCB LDPC code. For an absorbing set to be present in an SCB LDPC code, the associated CCM must not be full columnrank. Our approach selects rows and columns from the SCB mother matrix to systematically eliminate dominant absorbing sets by forcing the associated CCMs to be full column-rank. We use the CCM approach to select rows from the SCB mother matrix to design SCB codes of column weight 5 that avoid all low-weight absorbing sets (4, 8), (5, 9), and (6, 8). Simulation results demonstrate that the newly designed code has a steeper error-floor slope and provides at least one order of magnitude of improvement in the low error rate region as compared to an elementary array-based code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا