No Arabic abstract
This paper focuses on controlling the absorbing set spectrum for a class of regular LDPC codes known as separable, circulant-based (SCB) codes. For a specified circulant matrix, SCB codes all share a common mother matrix, examples of which are array-based LDPC codes and many common quasi-cyclic codes. SCB codes retain the standard properties of quasi-cyclic LDPC codes such as girth, code structure, and compatibility with efficient decoder implementations. In this paper, we define a cycle consistency matrix (CCM) for each absorbing set of interest in an SCB LDPC code. For an absorbing set to be present in an SCB LDPC code, the associated CCM must not be full columnrank. Our approach selects rows and columns from the SCB mother matrix to systematically eliminate dominant absorbing sets by forcing the associated CCMs to be full column-rank. We use the CCM approach to select rows from the SCB mother matrix to design SCB codes of column weight 5 that avoid all low-weight absorbing sets (4, 8), (5, 9), and (6, 8). Simulation results demonstrate that the newly designed code has a steeper error-floor slope and provides at least one order of magnitude of improvement in the low error rate region as compared to an elementary array-based code.
This work addresses the physical layer channel code design for an uncoordinated, frame- and slot-asynchronous random access protocol. Starting from the observation that collisions between two users yield very specific interference patterns, we define a surrogate channel model and propose different protograph low-density parity-check code designs. The proposed codes are both tested in a setup where the physical layer is abstracted, as well as on a more realistic channel model, where finite-length physical layer simulations of the entire asynchronous random access scheme, including decoding are carried out. We find that the abstracted physical layer model overestimates the performance when short blocks are considered. Additionally, the optimized codes show gains in supported channel traffic - a measure of the number of terminals that can be concurrently accommodated on the channel - of around 17% at a packet loss rate of 10^{-2} w.r.t. off-the-shelf codes.
In this paper we investigate the practical design for the multiple-antenna cognitive radio (CR) networks sharing the geographically used or unused spectrum. We consider a single cell network formed by the primary users (PU), which are half-duplex two-hop relay channels and the secondary users (SU) are single user additive white Gaussian noise channels. In addition, the coexistence constraint which requires PUs coding schemes and rates unchanged with the emergence of SU, should be satisfied. The contribution of this paper are twofold. First, we explicitly design the scheme to pair the SUs to the existing PUs in a single cell network. Second, we jointly design the nonlinear precoder, relay beamformer, and the transmitter and receiver beamformers to minimize the sum mean square error of the SU system. In the first part, we derive an approximate relation between the relay ratio, chordal distance and strengths of the vector channels, and the transmit powers. Based on this relation, we are able to solve the optimal pairing between SUs and PUs efficiently. In the second part, considering the feasibility of implementation, we exploit the Tomlinson-Harashima precoding instead of the dirty paper coding to mitigate the interference at the SU receiver, which is known side information at the SU transmitter. To complete the design, we first approximate the optimization problem as a convex one. Then we propose an iterative algorithm to solve it with CVX. This joint design exploits all the degrees of design. To the best of our knowledge, both the two parts have never been considered in the literature. Numerical results show that the proposed pairing scheme outperforms the greedy and random pairing with low complexity. Numerical results also show that even if all the channel matrices are full rank, under which the simple zero forcing scheme is infeasible, the proposed scheme can still work well.
A virtual multiple-input multiple-output (MIMO) wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol, is an alternative to a point-to-point MIMO system, when a single receiver is not equipped with multiple antennas. It is evident that the practicality of CF cooperation will be greatly enhanced if an efficient source coding technique can be used at the relay. It is even more desirable that CF cooperation should not be unduly sensitive to carrier frequency offsets (CFOs). This paper presents a practical study of these two issues. Firstly, codebook designs of the Voronoi vector quantization (VQ) and the tree-structure vector quantization (TSVQ) to enable CF cooperation at the relay are described. A comparison in terms of the codebook design and encoding complexity is analyzed. It is shown that the TSVQ is much simpler to design and operate, and can achieve a favorable performance-complexity tradeoff. Furthermore, this paper demonstrates that CFO can lead to significant performance degradation for the virtual MIMO system. To overcome this, it is proposed to maintain clock synchronization and jointly estimate the CFO between the relay and the destination. This approach is shown to provide a significant performance improvement.
In this paper, we propose an efficient coding scheme for the binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. Courtade and Weissman obtained the exact rate-distortion bound for a two-link binary CEO problem under this criterion. We find the optimal test-channel model and its parameters for the encoder of each link by using the given bound. Furthermore, an efficient encoding scheme based on compound LDGM-LDPC codes is presented to achieve the theoretical rates. In the proposed encoding scheme, a binary quantizer using LDGM codes and a syndrome-decoding employing LDPC codes are applied. An iterative decoding is also presented as a fusion center to reconstruct the observation bits. The proposed decoder consists of a sum-product algorithm with a side information from other decoder and a soft estimator. The output of the CEO decoder is the probability of source bits conditional to the received sequences of both links. This method outperforms the majority-based estimation of the source bits utilized in the prior studies of the binary CEO problem. Our numerical examples verify a close performance of the proposed coding scheme to the theoretical bound in several cases.
This paper presents an efficient hardware design approach for list successive cancellation (LSC) decoding of polar codes. By applying path-overlapping scheme, the l instances of (l > 1) successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. We also develop novel approaches to reduce the latencyassociated with the pipeline scheme. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders.