Do you want to publish a course? Click here

Selectively Precoded Polar Codes

74   0   0.0 ( 0 )
 Added by Samir Kumar Mishra
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose textit{selectively precoded polar (SPP) code}, built on top of Arikans capacity achieving polar codes. We provide the encoding and decoding scheme for SPP code. Simulation results show that for a target frame erasure rate (FER) of $mathbf{10^{-5}}$, a (128, 64) SPP code is just 0.23 dB away from the information theoretic limit at this blocklength. Further, it is also shown that such codes possess better distance properties compared to other contemporary polar code variants.

rate research

Read More

Polar codes with memory (PCM) are proposed in this paper: a pair of consecutive code blocks containing a controlled number of mutual information bits. The shared mutual information bits of the succeeded block can help the failed block to recover. The underlying polar codes can employ any decoding scheme such as the successive cancellation (SC) decoding (PCM-SC), the belief propagation (BP) decoding (PCM-BP), and the successive cancellation list (SCL) decoding (PCM-SCL). The analysis shows that the packet error rate (PER) of PCM decreases to the order of PER squared while maintaining the same complexity as the underlying polar codes. Simulation results indicate that for PCM-SC, the PER is comparable to (less than 0.3 dB) the stand-alone SCL decoding with two lists for the block length $N=256$. The PER of PCM-SCL with $L$ lists can match that of the stand-alone SCL decoding with $2L$ lists. Two hardware decoders for PCM are also implemented: the in-serial (IS) decoder and the low-latency interleaved (LLI) decoder. For $N=256$, synthesis results show that in the worst case, the latency of the PCM LLI decoder is only $16.1%$ of the adaptive SCL decoder with $L=2$, while the throughput is improved by 13 times compared to it.
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcast constraints. The polarization-based codes achieve rates on the boundary of the private-message capacity region. For two-user noisy broadcast channels, polar implementations are presented for two information-theoretic schemes: i) Covers superposition codes; ii) Martons codes. Due to the structure of polarization, constraints on the auxiliary and channel-input distributions are identified to ensure proper alignment of polarization indices in the multi-user setting. The codes achieve rates on the capacity boundary of a few classes of broadcast channels (e.g., binary-input stochastically degraded). The complexity of encoding and decoding is $O(n*log n)$ where $n$ is the block length. In addition, polar code sequences obtain a stretched-exponential decay of $O(2^{-n^{beta}})$ of the average block error probability where $0 < beta < 0.5$.
Quantum reading provides a general framework where to formulate the statistical discrimination of quantum channels. Several paths have been taken for such a problem. However, there is much to be done in the avenue of optimizing channel discrimination using classical codes. At least two open questions can be pointed to: how to construct low complexity encoding schemes that are interesting for channel discrimination and, more importantly, how to develop capacity-achieving protocols. The aim of this paper is to present a solution to these questions using polar codes. Firstly, we characterize the rate and reliability of the channels under polar encoding. We also show that the error probability of the scheme proposed decays exponentially with respect to the code length. Lastly, an analysis of the optimal quantum states to be used as probes is given.
79 - Kai Niu , Jincheng Dai , Kai Chen 2016
Polar codes are the first class of constructive channel codes achieving the symmetric capacity of the binary-input discrete memoryless channels. But the corresponding code length is limited to the power of two. In this paper, we establish a systematic framework to design the rate-compatible punctured polar (RCPP) codes with arbitrary code length. A new theoretic tool, called polar spectra, is proposed to count the number of paths on the code tree with the same number of zeros or ones respectively. Furthermore, a spectrum distance SD0 (SD1) and a joint spectrum distance (JSD) are presented as performance criteria to optimize the puncturing tables. For the capacity-zero puncturing mode (punctured bits are unknown to the decoder), we propose a quasi-uniform puncturing algorithm, analyze the number of equivalent puncturings and prove that this scheme can maximize SD1 and JSD. Similarly, for the capacity-one mode (punctured bits are known to the decoder), we also devise a reversal quasi-uniform puncturing scheme and prove that it has the maximum SD0 and JSD. Both schemes have a universal puncturing table without any exhausted search. These optimal RCPP codes outperform the performance of turbo codes in LTE wireless communication systems.
In this paper, we show some applications of algebraic curves to the construction of kernels of polar codes over a discrete memoryless channel which is symmetric w.r.t the field operations. We will also study the minimum distance of the polar codes proposed, their duals and the exponents of the matrices used for defining them. All the restrictions that we make to our curves will be accomplished by the so-called Castle Curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا