No Arabic abstract
Multibeam high throughput satellite (MB-HTS) systems will play a key role in delivering broadband services to a large number of users with diverse Quality of Service (QoS) requirements. This paper focuses on MB-HTS where the same spectrum is re-used by all user links and, in particular, we propose a novel user scheduling design capable to provide guarantees in terms of individual QoS requirements while maximizing the system throughput. This is achieved by precoding to mitigate mutual interference. The combinatorial optimization structure requires an extremely high cost to obtain the global optimum even with a reduced number of users. We, therefore, propose a heuristic algorithm yielding a good local solution and tolerable computational complexity, applicable for large-scale networks. Numerical results demonstrate the effectiveness of our proposed algorithm on scheduling many users with better sum throughput than the other benchmarks. Besides, the QoS requirements for all scheduled users are guaranteed.
In this paper we propose a simple method for generating short-length rate-compatible codes over $mathbb{Z}_M$ that are robust to non-coherent detection for $M$-PSK constellations. First, a greedy algorithm is used to construct a family of rotationally invariant codes for a given constellation. Then, by properly modifying such codes we obtain codes that are robust to non-coherent detection. We briefly discuss the optimality of the constructed codes for special cases of BPSK and QPSK constellations. Our method provides an upper bound for the length of optimal codes with a given desired non-coherent distance. We also derive a simple asymptotic upper bound on the frame error rate (FER) of such codes and provide the simulation results for a selected set of proposed codes. Finally, we briefly discuss the problem of designing binary codes that are robust to non-coherent detection for QPSK constellation.
Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this paper, we consider a high throughput satellite (HTS) system that employs BH in conjunction with precoding. In particular, we propose the concept of Cluster-Hopping (CH) that seamlessly combines the BH and precoding paradigms and utilize their individual competencies. The cluster is defined as a set of adjacent beams that are simultaneously illuminated. In addition, we propose an efficient time-space illumination pattern design, where we determine the set of clusters that can be illuminated simultaneously at each hopping event along with the illumination duration. We model the CH time-space illumination pattern design as an integer programming problem which can be efficiently solved. Supporting results based on numerical simulations are provided which validate the effectiveness of the proposed CH concept and time-space illumination pattern design.
This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overhead of considered systems. A nonconvex optimization problem for maximizing the sum rate is formulated, which is proved to be NP-hard. The branch and bound (BB) approach is invoked to obtain the optimal power allocation policy, which is proved to converge to a global optimal solution. To elaborate further, low complexity suboptimal approach is developed for striking a good computational complexity-optimality tradeoff, where matching theory and successive convex approximation (SCA) techniques are invoked for tackling the user scheduling and power allocation problems, respectively. Simulation results reveal that: i) the proposed low complexity solution achieves a near-optimal performance; and ii) the proposed mmWave NOMA systems is capable of outperforming conventional mmWave orthogonal multiple access (OMA) systems in terms of sum rate and the number of served users.
Large number of antennas and radio frequency (RF) chains at the base stations (BSs) lead to high energy consumption in massive MIMO systems. Thus, how to improve the energy efficiency (EE) with a computationally efficient approach is a significant challenge in the design of massive MIMO systems. With this motivation, a learning-based stochastic gradient descent algorithm is proposed in this paper to obtain the optimal joint uplink and downlink EE with joint antenna selection and user scheduling in single-cell massive MIMO systems. Using Jensens inequality and the characteristics of wireless channels, a lower bound on the system throughput is obtained. Subsequently, incorporating the power consumption model, the corresponding lower bound on the EE of the system is identified. Finally, learning-based stochastic gradient descent method is used to solve the joint antenna selection and user scheduling problem, which is a combinatorial optimization problem. Rare event simulation is embedded in the learning-based stochastic gradient descent method to generate samples with very small probabilities. In the analysis, both perfect and imperfect channel side information (CSI) at the BS are considered. Minimum mean-square error (MMSE) channel estimation is employed in the study of the imperfect CSI case. In addition, the effect of a constraint on the number of available RF chains in massive MIMO system is investigated considering both perfect and imperfect CSI at the BS.
Millimeter wave (mmWave) communication systems using adaptive-resolution analog-to-digital converters (RADCs) have recently drawn considerable interests from the research community as benefit of their high energy efficiency and low implementation cost. In this paper, we focus on the mmWave uplink using RADCs and investigate the joint user scheduling and resource allocation problem. Specifically, we seek to maximize the system throughput of the scheduled users by jointly optimizing their transmit power level and hybrid combiners as well as the number of quantization bits, subject to practical constraints. By relying on fractional programming (FP) techniques, we first covert this problem into a form amenable to optimization and exploit the specific structures in its solutions with the aid of the so-called Ky Fan n-norm. Then, the resultant optimization problem is solved using a penalty block successive concave approximation (P-BSCA) algorithm. Our numerical results reveal that the proposed algorithm substantially enhances the throughput of the scheduled users compared to the state-of-theart benchmark schemes and provides more flexible and efficient resource allocation control.