Do you want to publish a course? Click here

The role of interstitial hydrogen in SrCoO$_{2.5}$ antiferromagnetic insulator

66   0   0.0 ( 0 )
 Added by Zheng Liu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrogen exhibits qualitatively different charge states depending on the host material, as nicely explained by the state-of-the-art impurity-state calculation. Motivated by a recent experiment [Nature 546, 124 (2017)], we show that the complex oxide SrCoO$_{2.5}$ represents an interesting example, in which the interstitial H appears as a deep-level center according to the commonly-used transition level calculation, but no bound electron can be found around the impurity. Via a combination of charge difference analysis, density of states projection and constraint magnetization calculation, it turns out that the H-doped electron is spontaneously trapped by a nonunique Co ion and is fully spin-polarized by the onsite Hunds rule coupling. Consequently, the doped system remains insulating, whereas the antiferromagnetic exchange is slightly perturbed locally.



rate research

Read More

We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrinsic antiferromagnetic (AFM) topological insulator. We observe both bulk and surface bands in the electronic spectra, in reasonable agreement with the DFT calculations results. In striking contrast to the earlier literatures showing a full gap opening between two surface band manifolds along (0001) direction, we observed a gapless Dirac cone remain protected in MnBi2Te4 across the AFM transition (TN = 24 K). Our data also reveal the existence of a second Dirac cone closer to the Fermi level, predicted by band structure calculations. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering, we do observe splitting of the bulk band that develops below the TN . Having a moderately high ordering temperature, MnBi2Te4 provides a unique platform for studying the interplay between topology and magnetic ordering.
It was recently reported that a continuous electric current is a powerful control parameter to trigger changes in the electronic structure and metal-insulator transitions (MITs) in Ca2RuO4. However, the spatial evolution of the MIT and the implications of the unavoidable Joule heating have not been clarified yet, often hindered by the difficulty to asses the local sample temperature. In this work, we perform infrared thermal imaging on single-crystal Ca2RuO4 while controlling the MIT by electric current. The change in emissivity at the phase transition allows us to monitor the gradual formation and expansion of metallic phase upon increasing current. Our local temperature measurements indicate that, within our experimental resolution, the MIT always occurs at the same local transition temperatures, irrespectively if driven by temperature or by current. Our results highlight the importance of local heating, phase coexistence, and microscale inhomogeneity when studying strongly correlated materials under the flow of electric current.
The vanadates VO$_2$ and V$_2$O$_3$ are prototypical examples of strongly correlated materials that exhibit a metal-insulator transition. While the phase transitions in these materials have been studied extensively, there is a limited understanding of how the properties of these materials are affected by the presence of defects and doping. In this study we investigate the impact of native point defects in the form of Frenkel defects on the structural, magnetic and electronic properties of VO$_2$ and V$_2$O$_3$, using first-principles calculations. In VO$_2$ the vanadium Frenkel pairs lead to a non-trivial insulating state. The unpaired vanadium interstitial bonds to a single dimer, which leads to a trimer that has one singlet state and one localized single-electron $S=1/2$ state. The unpaired broken dimer created by the vanadium vacancy also has a localized $S=1/2$ state. Thus, the insulating state is created by the singlet dimers, the trimer and the two localized $S=1/2$ states. Oxygen Frenkel pairs, on the other hand, lead to a metallic state in VO$_2$, but are expected to be present in much lower concentrations. In contrast, the Frenkel defects in V$_2$O$_3$ do not directly suppress the insulating character of the material. However, the disorder created by defects in V$_2$O$_3$ alters the local magnetic moments and in turn reduces the energy cost of a transition between the insulating and conducting phases of the material. We also find self-trapped small polarons in V$_2$O$_3$, which has implications for transport properties in the insulating phase.
The electronic structure of interstitial hydrogen in a compound semiconductor FeS$_2$ (naturally $n$-type) is inferred from a muon study. An implanted muon (Mu, a pseudo-hydrogen) forms electronically different defect centers discerned by the hyperfine parameter ($omega_{rm hf}$). A body of evidence indicates that one muon is situated at the center of an iron-cornered tetrahedron with nearly isotropic $omega_{rm hf}$ (Mu$_{rm p}$), and that the other exists as a diamagnetic state (Mu$_{rm d}$, $omega_{rm hf}simeq 0$). Their response to thermal agitation indicates that the Mu$_{rm d}$ center accompanies a shallow level (donor or acceptor) understood by effective mass model while the electronic structure of Mu$_{rm p}$ center is more isolated from host than Mu$_{rm d}$ to form a deeper donor level. These observations suggest that interstitial hydrogen also serves as an electronically active impurity in FeS$_2$. Based on earlier reports on the hydrogen diffusion in FeS$_2$, possibility of fast diffusion for Mu$_{rm p}$ leading to formation of a complex defect state (Mu$^*_{rm d}$, $Tle 100$ K) or to motional narrowing state (Mu$^*_{rm p}$, $Tge 150$ K) is also discussed.
Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall (QAH) effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~ 0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا