Do you want to publish a course? Click here

Role of local temperature in the current-driven metal-insulator transition of Ca2RuO4

142   0   0.0 ( 0 )
 Added by Giordano Mattoni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It was recently reported that a continuous electric current is a powerful control parameter to trigger changes in the electronic structure and metal-insulator transitions (MITs) in Ca2RuO4. However, the spatial evolution of the MIT and the implications of the unavoidable Joule heating have not been clarified yet, often hindered by the difficulty to asses the local sample temperature. In this work, we perform infrared thermal imaging on single-crystal Ca2RuO4 while controlling the MIT by electric current. The change in emissivity at the phase transition allows us to monitor the gradual formation and expansion of metallic phase upon increasing current. Our local temperature measurements indicate that, within our experimental resolution, the MIT always occurs at the same local transition temperatures, irrespectively if driven by temperature or by current. Our results highlight the importance of local heating, phase coexistence, and microscale inhomogeneity when studying strongly correlated materials under the flow of electric current.



rate research

Read More

The vanadates VO$_2$ and V$_2$O$_3$ are prototypical examples of strongly correlated materials that exhibit a metal-insulator transition. While the phase transitions in these materials have been studied extensively, there is a limited understanding of how the properties of these materials are affected by the presence of defects and doping. In this study we investigate the impact of native point defects in the form of Frenkel defects on the structural, magnetic and electronic properties of VO$_2$ and V$_2$O$_3$, using first-principles calculations. In VO$_2$ the vanadium Frenkel pairs lead to a non-trivial insulating state. The unpaired vanadium interstitial bonds to a single dimer, which leads to a trimer that has one singlet state and one localized single-electron $S=1/2$ state. The unpaired broken dimer created by the vanadium vacancy also has a localized $S=1/2$ state. Thus, the insulating state is created by the singlet dimers, the trimer and the two localized $S=1/2$ states. Oxygen Frenkel pairs, on the other hand, lead to a metallic state in VO$_2$, but are expected to be present in much lower concentrations. In contrast, the Frenkel defects in V$_2$O$_3$ do not directly suppress the insulating character of the material. However, the disorder created by defects in V$_2$O$_3$ alters the local magnetic moments and in turn reduces the energy cost of a transition between the insulating and conducting phases of the material. We also find self-trapped small polarons in V$_2$O$_3$, which has implications for transport properties in the insulating phase.
332 - Sieu D. Ha , Gulgun H. Aydogdu , 2011
The correlated oxide SmNiO3 (SNO) exhibits an insulator to metal transition (MIT) at 130 {deg}C in bulk form. We report on synthesis and electron transport in SNO films deposited on LaAlO3 (LAO) and Si single crystals. X-ray diffraction studies show that compressively strained single-phase SNO grows epitaxially on LAO while on Si, mixed oxide phases are observed. MIT is observed in resistance-temperature measurements in films grown on both substrates, with charge transport in-plane for LAO/SNO films and out-of-plane for Si/SNO films. Electrically-driven memristive behavior is realized in LAO/SNO films, suggesting that SNO may be relevant for neuromorphic devices.
116 - Wentao Hu , Ke Yang , Xuan Wen 2021
Cobaltates have rich spin-states and diverse properties. Using spin-state pictures and firstprinciples calculations, here we study the electronic structure and magnetism of the mixed-valent double perovskite YBaCo2O6. We find that YBaCo2O6 is in the formal intermediate-spin (IS) Co3+/low-spin (LS) Co4+ ground state. The hopping of eg electron from IS-Co3+ to LS-Co4+ via double exchange gives rise to a ferromagnetic half-metallicity, which well accounts for the recent experiments. The reduction of both magnetization and Curie temperature by oxygen vacancies is discussed, aided with Monte Carlo simulations. We also explore several other possible spin-states and their interesting electronic/magnetic properties. Moreover, we predict that a volume expansion more than 3% would tune YBaCo2O6 into the high-spin (HS) Co3+/LS Co4+ ferromagnetic state and simultaneously drive a metal-insulator transition. Therefore, spin-states are a useful parameter for tuning the material properties of cobaltates.
75 - L. Craco , M. S. Laad , S. Leoni 2016
Unusual metallic states involving breakdown of the standard Fermi-liquid picture of long-lived quasiparticles in well-defined band states emerge at low temperatures near correlation-driven Mott transitions. Prominent examples are ill-understood metallic states in $d$- and $f$-band compounds near Mott-like transitions. Finding of superconductivity in solid O$_{2}$ on the border of an insulator-metal transition at high pressures close to 96~GPa is thus truly remarkable. Neither the insulator-metal transition nor superconductivity are understood satisfactorily. Here, we undertake a first step in this direction by focussing on the pressure-driven insulator-metal transition using a combination of first-principles density-functional and many-body calculations. We report a striking result: the finding of an orbital-selective Mott transition in a pure $p$-band elemental system. We apply our theory to understand extant structural and transport data across the transition, and make a specific two-fluid prediction that is open to future test. Based thereupon, we propose a novel scenario where soft multiband modes built from microscopically coexisting itinerant and localized electronic states are natural candidates for the pairing glue in pressurized O$_{2}$.
102 - Yin Shi , Long-Qing Chen 2020
Metal-ion doping can effectively regulate the metal-insulator transition temperature in $mathrm{VO}_2$. Experiments found that the pentavalent and hexavalent ion doping dramatically reduces the transition temperature while the trivalent ion doping increases the transition temperature and induces intermediate phases. Based on the phase-field model of the metal-insulator transition in $mathrm{VO}_2$ we developed previously, we formulate a Landau potential of the metal-ion-doped $mathrm{VO}_2$ taking account of the effects of doping on the electron correlation and lattice structure. The effect of metal-ion doping on the lattice structure is accounted for in a phenomenological way. Using the Landau potential, we calculate the temperature-dopant-concentration phase diagrams of $mathrm{VO}_2$ doped with various metal ions consistent with the experiments and provide explanation to the different behaviors of different metal-ion doping. The phenomenological theory can provide estimations of phase diagrams of $mathrm{VO}_2$ doped with other metal ions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا