Do you want to publish a course? Click here

The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave

87   0   0.0 ( 0 )
 Added by Dmitrii Kolotkov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observational detection of quasi-periodic drifting fine structures in a type III radio burst associated with a solar flare SOL2015-04-16T11:22, with Low Frequency Array, is presented. Although similar modulations of the type III emission have been observed before and were associated with the plasma density fluctuations, the origin of those fluctuations was unknown. Analysis of the striae of the intensity variation in the dynamic spectrum allowed us to reveal two quasi-oscillatory components. The shorter component has the apparent wavelength of $sim2$ Mm, phase speed of $sim657$ km s$^{-1}$, which gives the oscillation period of $sim3$ s, and the relative amplitude of $sim0.35$%. The longer component has the wavelength of $sim12$ Mm, and relative amplitude of $sim5.1$%. The short frequency range of the detection does not allow us to estimate its phase speed. However, the properties of the shorter oscillatory component allowed us to interpret it as a fast magnetoacoustic wave guided by a plasma non-uniformity along the magnetic field outwards from the Sun. The assumption that the intensity of the radio emission is proportional to the amount of plasma in the emitting volume allowed us to show that the superposition of the plasma density modulation by a fast wave and a longer-wavelength oscillation of an unspecified nature could readily reproduce the fine structure of the observed dynamic spectrum. The observed parameters of the fast wave give the absolute value of the magnetic field in the emitting plasma of $sim1.1$ G which is consistent with the radial magnetic field model.



rate research

Read More

Rapidly decaying slow magnetoacoustic waves are regularly observed in the solar coronal structures, offering a promising tool for a seismological diagnostics of the coronal plasma, including its thermodynamical properties. The effect of damping of standing slow magnetoacoustic oscillations in the solar coronal loops is investigated accounting for the field-aligned thermal conductivity and a wave-induced misbalance between radiative cooling and some unspecified heating rates. The non-adiabatic terms were allowed to be arbitrarily large, corresponding to the observed values. The thermal conductivity was taken in its classical form, and a power-law dependence of the heating function on the density and temperature was assumed. The analysis was conducted in the linear regime and in the infinite magnetic field approximation. The wave dynamics is found to be highly sensitive to the characteristic time scales of the thermal misbalance. Depending on certain values of the misbalance time scales three regimes of the wave evolution were identified, namely the regime of a suppressed damping, enhanced damping where the damping rate drops down to the observational values, and acoustic over-stability. The specific regime is determined by the dependences of the radiative cooling and heating functions on thermodynamical parameters of the plasma in the vicinity of the perturbed thermal equilibrium. The comparison of the observed and theoretically derived decay times and oscillation periods allows us to constrain the coronal heating function. For typical coronal parameters, the observed properties of standing slow magnetoacoustic oscillations could be readily reproduced with a reasonable choice of the heating function.
A three-dimensional MHD model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided the small-scale footpoint motions have velocities of 1-2 km/s and time scales of 60-200 s. The heating rate per unit volume in the chromosphere is 2 to 3 orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly varying and time-extended component which follows a short (few minutes) impulsive phase and which lasts for a few tens of minutes to more than one hour. The few examples discussed in the literature indicate that such long-lasting submillimeter emission is most likely thermal bremsstrahlung. We present a detailed analysis of the time-extended phase of the 2003 October 27 (M6.7) flare, combining 1-345 GHz total-flux radio measurements with X-ray, EUV, and H{alpha} observations. We find that the time-extended radio emission is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is entirely produced in the corona by hot and cool materials at 7-16 MK and 1-3 MK, respectively. At 345 GHz, there is an additional contribution from chromospheric material at a few 10^4 K. These results, which may also apply to other millimeter-submillimeter radio events, are not consistent with the expectations from standard semi-empirical models of the chromosphere and transition region during flares, which predict observable radio emission from the chromosphere at all frequencies where the corona is transparent.
The observed properties (i.e., source size, source position, time duration, decay time) of solar radio emission produced through plasma processes near the local plasma frequency, and hence the interpretation of solar radio bursts, are strongly influenced by propagation effects in the inhomogeneous turbulent solar corona. In this work, a 3D stochastic description of the propagation process is presented, based on the Fokker-Planck and Langevin equations of radio-wave transport in a medium containing anisotropic electron density fluctuations. Using a numerical treatment based on this model, we investigate the characteristic source sizes and burst decay times for Type III solar radio bursts. Comparison of the simulations with the observations of solar radio bursts shows that predominantly perpendicular density fluctuations in the solar corona are required, with an anisotropy factor $sim 0.3$ for sources observed at around 30~MHz. The simulations also demonstrate that the photons are isotropized near the region of primary emission, but the waves are then focused by large-scale refraction, leading to plasma radio emission directivity that is characterized by a half-width-half-maximum of about 40~degrees near 30~MHz. The results are applicable to various solar radio bursts produced via plasma emission.
Rapidly propagating fast magnetoacoustic wave trains guided by field-aligned plasma non-uniformities are confidently observed in the Suns corona. Observations at large heights suggest that fast wave trains can travel long distances from the excitation locations. We study characteristic time signatures of fully developed, dispersive fast magnetoacoustic wave trains in field-aligned zero-$beta$ plasma slabs in the linear regime. Fast wave trains are excited by a spatially localised impulsive driver and propagate along the waveguide as prescribed by the waveguide-caused dispersion. In slabs with steeper transverse density profiles, developed wave trains are shown to consist of three distinct phases: a long-period quasi-periodic phase with the oscillation period shortening with time, a multi-periodic (peloton) phase in which distinctly different periods co-exist, and a short-lived periodic Airy phase. The appearance of these phases is attributed to a non-monotonic dependence of the fast wave group speed on the parallel wavenumber due to the waveguide dispersion, and is shown to be different for axisymmetric (sausage) and non-axisymmetric (kink) modes. In wavelet analysis, this corresponds to the transition from the previously known tadpole shape to a new boomerang shape of the wave train spectrum, with two well-pronounced arms at shorter and longer periods. We describe a specific previously published radio observation of a coronal fast wave train, highly suggestive of a change of the wavelet spectrum from a tadpole to a boomerang, broadly consistent with our modelling. The applicability of these boomerang-shaped fast wave trains for probing the transverse structuring of the waveguiding coronal plasma is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا