Do you want to publish a course? Click here

Heating of the Solar Chromosphere and Corona by Alfven Wave Turbulence

141   0   0.0 ( 0 )
 Added by Steven R. Cranmer
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A three-dimensional MHD model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided the small-scale footpoint motions have velocities of 1-2 km/s and time scales of 60-200 s. The heating rate per unit volume in the chromosphere is 2 to 3 orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.

rate research

Read More

Physical processes which may lead to solar chromospheric heating are analyzed using high-resolution 1.5D non-ideal MHD modelling. We demonstrate that it is possible to heat the chromospheric plasma by direct resistive dissipation of high-frequency Alfven waves through Pedersen resistivity. However this is unlikely to be sufficient to balance radiative and conductive losses unless unrealistic field strengths or photospheric velocities are used. The precise heating profile is determined by the input driving spectrum since in 1.5D there is no possibility of Alfven wave turbulence. The inclusion of the Hall term does not affect the heating rates. If plasma compressibility is taken into account, shocks are produced through the ponderomotive coupling of Alfven waves to slow modes and shock heating dominates the resistive dissipation. In 1.5D shock coalescence amplifies the effects of shocks and for compressible simulations with realistic driver spectra the heating rate exceeds that required to match radiative and conductive losses. Thus while the heating rates for these 1.5D simulations are an overestimate they do show that ponderomotive coupling of Alfven waves to sound waves is more important in chromospheric heating than Pedersen dissipation through ion-neutral collisions.
Magneto-hydrodynamic (MHD) Alfven waves have been a focus of laboratory plasma physics and astrophysics for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions for their existence, direct detection has proved difficult as a result of their evolving and dynamic observational signatures. The viability of Alfven waves as a heating mechanism relies upon the efficient dissipation and thermalization of the wave energy, with direct evidence remaining elusive until now. Here we provide the first observational evidence of Alfven waves heating chromospheric plasma in a sunspot umbra through the formation of shock fronts. The magnetic field configuration of the shock environment, alongside the tangential velocity signatures, distinguish them from conventional umbral flashes. Observed local temperature enhancements of 5% are consistent with the dissipation of mode-converted Alfven waves driven by upwardly propagating magneto-acoustic oscillations, providing an unprecedented insight into the behaviour of Alfven waves in the solar atmosphere and beyond.
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magneto-hydrodynamics (MHD) code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Suns corona.
M dwarfs atmosphere is expected to be highly magnetized. The magnetic energy can be responsible for heating the stellar chromosphere and corona, and driving the stellar wind. The nonlinear propagation of Alfven wave is the promising mechanism for both heating stellar atmosphere and driving stellar wind. Based on this Alfven wave scenario, we carried out the one-dimensional compressive magnetohydrodynamic (MHD) simulation to reproduce the stellar atmospheres and winds of TRAPPIST-1, Proxima Centauri, YZ CMi, AD Leo, AX Mic, as well as the Sun. The nonlinear propagation of Alfven wave from the stellar photosphere to chromosphere, corona, and interplanetary space is directly resolved in our study. The simulation result particularly shows that the slow shock generated through the nonlinear mode coupling of Alfven wave is crucially involved in both dynamics of stellar chromosphere (stellar spicule) and stellar wind acceleration. Our parameter survey further revealed the following general trends of physical quantities of stellar atmosphere and wind. (1) The M dwarfs coronae tend to be cooler and denser than solar corona. (2) M dwarfs stellar winds can be characterized with relatively faster velocity and much smaller mass-loss rate compared to those of solar wind. The physical mechanisms behind these tendencies are clarified in this paper, where the stronger stratification of M dwarfs atmosphere and relatively smaller Alfven wave energy input from the M dwarfs photosphere are remarkable.
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength EUV images of CR2107 with the observations from STEREO/EUVI and SDO/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in proximity of active regions intensifies the dissipation and observable emission sufficiently.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا