No Arabic abstract
Rapidly propagating fast magnetoacoustic wave trains guided by field-aligned plasma non-uniformities are confidently observed in the Suns corona. Observations at large heights suggest that fast wave trains can travel long distances from the excitation locations. We study characteristic time signatures of fully developed, dispersive fast magnetoacoustic wave trains in field-aligned zero-$beta$ plasma slabs in the linear regime. Fast wave trains are excited by a spatially localised impulsive driver and propagate along the waveguide as prescribed by the waveguide-caused dispersion. In slabs with steeper transverse density profiles, developed wave trains are shown to consist of three distinct phases: a long-period quasi-periodic phase with the oscillation period shortening with time, a multi-periodic (peloton) phase in which distinctly different periods co-exist, and a short-lived periodic Airy phase. The appearance of these phases is attributed to a non-monotonic dependence of the fast wave group speed on the parallel wavenumber due to the waveguide dispersion, and is shown to be different for axisymmetric (sausage) and non-axisymmetric (kink) modes. In wavelet analysis, this corresponds to the transition from the previously known tadpole shape to a new boomerang shape of the wave train spectrum, with two well-pronounced arms at shorter and longer periods. We describe a specific previously published radio observation of a coronal fast wave train, highly suggestive of a change of the wavelet spectrum from a tadpole to a boomerang, broadly consistent with our modelling. The applicability of these boomerang-shaped fast wave trains for probing the transverse structuring of the waveguiding coronal plasma is discussed.
Slow magnetoacoustic waves are omnipresent in both natural and laboratory plasma systems. The wave-induced misbalance between plasma cooling and heating processes causes the amplification or attenuation, and also dispersion, of slow magnetoacoustic waves. The wave dispersion could be attributed to the presence of characteristic time scales in the system, connected with the plasma heating or cooling due to the competition of the heating and cooling processes in the vicinity of the thermal equilibrium. We analysed linear slow magnetoacoustic waves in a plasma in a thermal equilibrium formed by a balance of optically thin radiative losses, field-align thermal conduction, and an unspecified heating. The dispersion is manifested by the dependence of the effective adiabatic index of the wave on the wave frequency, making the phase and group speeds frequency-dependent. The mutual effect of the wave amplification and dispersion is shown to result into the occurrence of an oscillatory pattern in an initially broadband slow wave, with the characteristic period determined by the thermal misbalance time scales, i.e. by the derivatives of the combined radiation loss and heating function with respect to the density and temperature, evaluated at the equilibrium. This effect is illustrated by estimating the characteristic period of the oscillatory pattern, appearing because of thermal misbalance in the plasma of the solar corona. It is found that by an order of magnitude the period is about the typical periods of slow magnetoacoustic oscillations detected in the corona.
Observational detection of quasi-periodic drifting fine structures in a type III radio burst associated with a solar flare SOL2015-04-16T11:22, with Low Frequency Array, is presented. Although similar modulations of the type III emission have been observed before and were associated with the plasma density fluctuations, the origin of those fluctuations was unknown. Analysis of the striae of the intensity variation in the dynamic spectrum allowed us to reveal two quasi-oscillatory components. The shorter component has the apparent wavelength of $sim2$ Mm, phase speed of $sim657$ km s$^{-1}$, which gives the oscillation period of $sim3$ s, and the relative amplitude of $sim0.35$%. The longer component has the wavelength of $sim12$ Mm, and relative amplitude of $sim5.1$%. The short frequency range of the detection does not allow us to estimate its phase speed. However, the properties of the shorter oscillatory component allowed us to interpret it as a fast magnetoacoustic wave guided by a plasma non-uniformity along the magnetic field outwards from the Sun. The assumption that the intensity of the radio emission is proportional to the amount of plasma in the emitting volume allowed us to show that the superposition of the plasma density modulation by a fast wave and a longer-wavelength oscillation of an unspecified nature could readily reproduce the fine structure of the observed dynamic spectrum. The observed parameters of the fast wave give the absolute value of the magnetic field in the emitting plasma of $sim1.1$ G which is consistent with the radial magnetic field model.
Quasi-periodic oscillations inferred during rare magnetar giant flare tails were initially interpreted as torsional oscillations of the neutron star (NS) crust, and have been more recently described as global core+crust perturbations. Similar frequencies are also present in high signal-to-noise magnetar short bursts. In magnetars, disturbances of the field are strongly coupled to the NS crust regardless of the triggering mechanism of short bursts. For low-altitude magnetospheric magnetar models of fast radio bursts (FRBs) associated with magnetar short bursts, such as the low-twist model, crustal oscillations may be associated with additional radio bursts in the encompassing short burst event (as recently suggested for SGR 1935+2154). Given the large extragalactic volume probed by wide-field radio transient facilities, this offers the prospect of studying NS crusts leveraging samples far more numerous than galactic high-energy magnetar bursts by studying statistics of sub-burst structure or clustered trains of FRBs. We explore the prospects for distinguishing NS equation of state models with increasingly larger future sets of FRB observations. Lower $l$-number eigenmodes (corresponding to FRB time intervals of $sim5-50$ ms) are likely less susceptible than high-$l$ modes to confusion by systematic effects associated with the NS crust physics, magnetic field, and damping. They may be more promising in their utility, and also may corroborate models where FRBs arise from mature magnetars. Future observational characterization of such signals can also determine whether they can be employed as cosmological standard oscillators to constrain redshift, or can be used to constrain the mass of FRB-producing magnetars when reliable redshifts are available.
Quasi-periodic fast propagating (QFP) waves are often excited by solar flares, and could be trapped in the coronal structure with low Alfven speed, so they could be used as a diagnosing tool for both the flaring core and magnetic waveguide. As the periodicity of a QFP wave could originate from a periodic source or be dispersively waveguided, it is a key parameter for diagnosing the flaring core and waveguide. In this paper, we study two QFP waves excited by a GOES-class C1.3 solar flare occurring at active region NOAA 12734 on 8 March 2019. Two QFP waves were guided by two oppositely oriented coronal funnel. The periods of two QFP waves were identical and were roughly equal to the period of the oscillatory signal in the X-ray and 17 GHz radio emission released by the flaring core. It is very likely that the two QFP waves could be periodically excited by the flaring core. Many features of this QFP wave event is consistent with the magnetic tuning fork model. We also investigated the seismological application with QFP waves, and found that the magnetic field inferred with magnetohydrodynamic seismology was consistent with that obtained in magnetic extrapolation model. Our study suggest that the QFP wave is a good tool for diagnosing both the flaring core and the magnetic waveguide.
Resonant absorption of fast magnetoacoustic (FMA) waves in an inhomogeneous, weakly dissipative, one-dimensional planar, strongly anisotropic and dispersive plasma is investigated. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localised slow or Alfven waves present in the inhomogeneous layer and are partly reflected, dissipated and transmitted by this region. The presented research aims to find the coefficient of wave energy absorption under solar chromospheric and coronal conditions. Numerical results are analyzed to find the coefficient of wave energy absorption at both the slow and Alfven resonance positions. The mathematical derivations are based on the two simplifying assumptions that (i) nonlinearity is weak, and (ii) the thickness of the inhomogeneous layer is small in comparison to the wavelength of the wave, i.e. we employ the so-called long wavelength approximation. Slow resonance is found to be described by the nonlinear theory, while the dynamics at the Alfven resonance can be described within the linear framework. We introduce a new concept of coupled resonances, which occurs when two different resonances are in close proximity to each other, causing the incoming wave to act as though it has been influenced by the two resonances simultaneously. Our results show that the wave energy absorption is heavily dependent on the angle of the incident wave in combination with the inclination angle of the equilibrium magnetic field. In addition, it is found that FMA waves are very efficiently absorbed at the Alfven resonance under coronal conditions. Under chromospheric conditions the FMA waves are far less efficiently absorbed, despite an increase in efficiency due to the coupled resonances.