No Arabic abstract
Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective mean for the manipulation and control of carriers, from the visible to the Terahertz (THz) frequency range. Despite the exceptional versatility, they commonly require challenging epitaxial growth procedures due to the need of clean and abrupt interfaces, which proved to be a major obstacle for the realization of room-temperature (RT), high-efficiency devices, like source, detectors or modulators, especially in the far-infrared. Two-dimensional (2D) layered materials, like graphene and phosphorene, recently emerged as a reliable, flexible and versatile alternative for devising efficient RT detectors operating at Terahertz frequencies. We here combine the benefit of the heterostructure architecture with the exceptional technological potential of 2D layered nanomaterials; by reassembling the thin isolated atomic planes of hexagonal borum nitride (hBN) with a few layer phosphorene (black phosphorus (BP)) we mechanically stacked hBN/BP/hBN heterostructures to devise high-efficiency THz photodetectors operating in the 0.3-0.65 THz range from 4K to 300K with a record SNR=20000.
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO$_2$ substrate based graphene devices, and obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and DYakonov-Perel mechanisms. The behaviour of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin injection polarization of the high-resistance contacts can be modulated by DC bias from -0.3 V to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features mark a distinctive spin injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.
Encapsulating graphene in hexagonal Boron Nitride has several advantages: the highest mobilities reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the protective hBN layers. Nevertheless, subtle effects may arise due to the differing lattice constants of graphene and hBN, and due to the twist angle between the graphene and hBN lattices. Here, we use a recently developed model which allows us to perform band structure and magnetotransport calculations of such structures, and show that with a proper account of the moire physics an excellent agreement with experiments can be achieved, even for complicated structures such as disordered graphene, or antidot lattices on a monolayer hBN with a relative twist angle. Calculations of this kind are essential to a quantitative modeling of twistronic devices.
Van der Waals (vdW) assembly of two-dimensional materials has been long recognized as a powerful tool to create unique systems with properties that cannot be found in natural compounds. However, among the variety of vdW heterostructures and their various properties, only a few have revealed metallic and ferroelectric behaviour signatures. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride, which demonstrating high room temperature mobility of the order of 10 m$^2$V$^{-1}$s$^{-1}$ and exhibits robust ambipolar switching in response to the external electric field. The observed hysteresis is tunable, reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a route for developing novel phase-changing devices.
Second-order nonlinear optical response allows to detect different properties of the system associated with the inversion symmetry breaking. Here, we use a second harmonic generation effect to investigate the alignment of a graphene/hexagonal Boron Nitride heterostructure. To achieve that, we activate a commensurate-incommensurate phase transition by a thermal annealing of the sample. We find that this structural change in the system can be directly observed through a strong modification of a nonlinear optical signal. This result reveals the potential of a second harmonic generation technique for probing structural properties of layered systems.
The observation of novel physical phenomena such as Hofstadters butterfly, topological currents and unconventional superconductivity in graphene have been enabled by the replacement of SiO$_2$ with hexagonal Boron Nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices. In this work we probe the strain configuration of graphene on hBN contacted with two types of metal contacts, two-dimensional (2D) top-contacts and one-dimensional (1D) edge-contacts. We show that top-contacts induce strain in the graphene layer along two opposing leads, leading to a complex strain pattern across the device channel. Edge-contacts, on the contrary, do not show such strain pattern. A finite-elements modelling simulation is used to confirm that the observed strain pattern is generated by the mechanical action of the metal contacts clamped to the graphene. Thermal annealing is shown to reduce the overall doping whilst increasing the overall strain, indicating and increased interaction between graphene and hBN. Surprisingly, we find that the two contacts configurations lead to different twist-angles in graphene/hBN superlattices, which converge to the same value after thermal annealing. This observation confirms the self-locking mechanism of graphene/hBN superlattices also in the presence of strain gradients. Our experiments may have profound implications in the development of future electronic devices based on heterostructures and provide a new mechanism to induce complex strain patterns in 2D materials.