Do you want to publish a course? Click here

Model Agnostic Answer Reranking System for Adversarial Question Answering

106   0   0.0 ( 0 )
 Added by Sagnik Majumder
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While numerous methods have been proposed as defenses against adversarial examples in question answering (QA), these techniques are often model specific, require retraining of the model, and give only marginal improvements in performance over vanilla models. In this work, we present a simple model-agnostic approach to this problem that can be applied directly to any QA model without any retraining. Our method employs an explicit answer candidate reranking mechanism that scores candidate answers on the basis of their content overlap with the question before making the final prediction. Combined with a strong base QAmodel, our method outperforms state-of-the-art defense techniques, calling into question how well these techniques are actually doing and strong these adversarial testbeds are.



rate research

Read More

In this paper we propose a novel approach towards improving the efficiency of Question Answering (QA) systems by filtering out questions that will not be answered by them. This is based on an interesting new finding: the answer confidence scores of state-of-the-art QA systems can be approximated well by models solely using the input question text. This enables preemptive filtering of questions that are not answered by the system due to their answer confidence scores being lower than the system threshold. Specifically, we learn Transformer-based question models by distilling Transformer-based answering models. Our experiments on three popular QA datasets and one industrial QA benchmark demonstrate the ability of our question models to approximate the Precision/Recall curves of the target QA system well. These question models, when used as filters, can effectively trade off lower computation cost of QA systems for lower Recall, e.g., reducing computation by ~60%, while only losing ~3-4% of Recall.
Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer. In this paper, we propose a simple and effective passage reranking method, named Reader-guIDEd Reranker (RIDER), which does not involve training and reranks the retrieved passages solely based on the top predictions of the reader before reranking. We show that RIDER, despite its simplicity, achieves 10 to 20 absolute gains in top-1 retrieval accuracy and 1 to 4 Exact Match (EM) gains without refining the retriever or reader. In addition, RIDER, without any training, outperforms state-of-the-art transformer-based supervised rerankers. Remarkably, RIDER achieves 48.3 EM on the Natural Questions dataset and 66.4 EM on the TriviaQA dataset when only 1,024 tokens (7.8 passages on average) are used as the reader input after passage reranking.
62 - Zeyu Zhang , Thuy Vu , 2021
This paper studies joint models for selecting correct answer sentences among the top $k$ provided by answer sentence selection (AS2) modules, which are core components of retrieval-based Question Answering (QA) systems. Our work shows that a critical step to effectively exploit an answer set regards modeling the interrelated information between pair of answers. For this purpose, we build a three-way multi-classifier, which decides if an answer supports, refutes, or is neutral with respect to another one. More specifically, our neural architecture integrates a state-of-the-art AS2 model with the multi-classifier, and a joint layer connecting all components. We tested our models on WikiQA, TREC-QA, and a real-world dataset. The results show that our models obtain the new state of the art in AS2.
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.
In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlabeled e-commerce reviews and product attributes. However, safe answer problems pose significant challenges to text generation tasks, and e-commerce question-answering task is no exception. To generate more meaningful answers, in this paper, we propose a novel generative neural model, called the Meaningful Product Answer Generator (MPAG), which alleviates the safe answer problem by taking product reviews, product attributes, and a prototype answer into consideration. Product reviews and product attributes are used to provide meaningful content, while the prototype answer can yield a more diverse answer pattern. To this end, we propose a novel answer generator with a review reasoning module and a prototype answer reader. Our key idea is to obtain the correct question-aware information from a large scale collection of reviews and learn how to write a coherent and meaningful answer from an existing prototype answer. To be more specific, we propose a read-and-write memory consisting of selective writing units to conduct reasoning among these reviews. We then employ a prototype reader consisting of comprehensive matching to extract the answer skeleton from the prototype answer. Finally, we propose an answer editor to generate the final answer by taking the question and the above parts as input. Conducted on a real-world dataset collected from an e-commerce platform, extensive experimental results show that our model achieves state-of-the-art performance in terms of both automatic metrics and human evaluations. Human evaluation also demonstrates that our model can consistently generate specific and proper answers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا