Do you want to publish a course? Click here

Effect of illumination on quantum lifetime in GaAs quantum wells

103   0   0.0 ( 0 )
 Added by Michael A. Zudov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-temperature illumination of a two-dimensional electron gas in GaAs quantum wells is known to greatly improve the quality of high-field magnetotransport. The improvement is known to occur even when the carrier density and mobility remain unchanged, but what exactly causes it remains unclear. Here, we investigate the effect of illumination on microwave photoresistance in low magnetic fields. We find that the amplitude of microwave-induced resistance oscillations grows dramatically after illumination. Dingle analysis reveals that this growth reflects a substantial increase in the single-particle (quantum) lifetime, which likely originates from the light-induced redistribution of charge enhancing the screening capability of the doping layers.



rate research

Read More

We study the electron spin relaxation in both symmetric and asymmetric GaAs/AlGaAs quantum wells (QWs) grown on (110) substrates in an external magnetic field B applied along the QW normal. The spin polarization is induced by circularly polarized light and detected by time-resolved Kerr rotation technique. In the asymmetric structure, where a {delta}-doped layer on one side of the QW produces the Rashba contribution to the conduction-band spin-orbit splitting, the lifetime of electron spins aligned along the growth axis exhibits an anomalous dependence on B in the range 0<B<0.5 T; this results from the interplay between the Dresselhaus and Rashba effective fields which are perpendicular to each other. For larger magnetic fields, the spin lifetime increases, which is the consequence of the cyclotron motion of the electrons and is also observed in (001)-grown quantum wells. The experimental results are in agreement with the calculation of the spin lifetimes in (110)- grown asymmetric quantum wells described by the point group Cs where the growth direction is not the principal axis of the spin-relaxation-rate tensor.
We report on microwave-induced resistance oscillations (MIROs) in a tunable-density 30-nm-wide GaAs/AlGaAs quantum well. We find that the MIRO amplitude increases dramatically with carrier density. Our analysis shows that the anticipated increase in the effective microwave power and quantum lifetime with density is not sufficient to explain the observed growth of the amplitude. We further observe that the fundamental oscillation extrema move towards cyclotron resonance with increasing density, which also contradicts theoretical predictions. These findings reveal that the density dependence is not properly captured by existing theories, calling for further studies.
Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observed pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a new contribution of microscopic disorder in the occurrence of novel phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.
We consider quantum lifetime derived from low-field Shubnikov-de Haas oscillations as a metric of quality of the two-dimensional electron gas in GaAs quantum wells that expresses large excitation gaps in the fractional quantum Hall states of the N=1 Landau level. Analysis indicates two salient features: 1) small density inhomogeneities dramatically impact the amplitude of Shubnikov-de Haas oscillations such that the canonical method (cf. Coleridge, Phys. Rev. B textbf{44}, 3793) for determination of quantum lifetime substantially underestimates $tau_q$ unless density inhomogeneity is explicitly considered; 2) $tau_q$ does not correlate well with quality as measured by $Delta_{5/2}$, the excitation gap of the fractional quantum Hall state at 5/2 filling.
131 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا