Do you want to publish a course? Click here

Quantum Hall stripes in high-density GaAs/AlGaAs quantum wells

132   0   0.0 ( 0 )
 Added by Michael A. Zudov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.



rate research

Read More

Slow magnetooscilations of the conductivity are observed in a 75 nm wide quantum well at heating of the two-dimensional electrons by a high-intensity surface acoustic wave. These magnetooscillations are caused by intersubband elastic scattering between the symmetric and asymmetric subbands formed due to an electrostatic barrier in the center of the quantum well. The tunneling splitting between these subbands as well as the intersubband scattering rate are determined.
We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs-core-shell-nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photo-thermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core-shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors.
We study phonon emission in a GaAs/AlGaAs double quantum dot by monitoring the tunneling of a single electron between the two dots. We prepare the system such that a known amount of energy is emitted in the transition process. The energy is converted into lattice vibrations and the resulting tunneling rate depends strongly on the phonon scattering and its effective phonon spectral density. We are able to fit the measured transition rates and see imprints of interference of phonons with themselves causing oscillations in the transition rates.
The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas has been studied by picosecond pump-probe Kerr rotation with an in-plane magnetic field. For resonant optical excitation of the positively charged exciton the spin precession shows two types of oscillations. Fast oscillating electron spin beats decay with the radiative lifetime of the charged exciton of 50 ps. Long lived spin coherence of the holes with dephasing times up to 650 ps. The spin dephasing time as well as the in-plane hole g factor show strong temperature dependence, underlining the importance of hole localization at cryogenic temperatures.
The magnetic field dependence of the excitonic states in unstrained GaAs/AlGaAs quantum dots is investigated theoretically and experimentally. The diamagnetic shift for the ground and the excited states are studied in magnetic fields of varying orientation. In the theoretical study, calculations are performed within the single band effective mass approximation, including band nonparabolicity, the full experimental three-dimensional dot shape and the electron-hole Coulomb interaction. These calculations are compared with the experimental results for both the ground and the excited states in fields up to 50 Tesla. Good agreement is found between theory and experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا