Do you want to publish a course? Click here

Discovering the Elite Hypervolume by Leveraging Interspecies Correlation

139   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Evolution has produced an astonishing diversity of species, each filling a different niche. Algorithms like MAP-Elites mimic this divergent evolutionary process to find a set of behaviorally diverse but high-performing solutions, called the elites. Our key insight is that species in nature often share a surprisingly large part of their genome, in spite of occupying very different niches; similarly, the elites are likely to be concentrated in a specific elite hypervolume whose shape is defined by their common features. In this paper, we first introduce the elite hypervolume concept and propose two metrics to characterize it: the genotypic spread and the genotypic similarity. We then introduce a new variation operator, called directional variation, that exploits interspecies (or inter-elites) correlations to accelerate the MAP-Elites algorithm. We demonstrate the effectiveness of this operator in three problems (a toy function, a redundant robotic arm, and a hexapod robot).



rate research

Read More

106 - Weiyu Chen , Hisao Ishibuhci , 2020
Subset selection is a popular topic in recent years and a number of subset selection methods have been proposed. Among those methods, hypervolume subset selection is widely used. Greedy hypervolume subset selection algorithms can achieve good approximations to the optimal subset. However, when the candidate set is large (e.g., an unbounded external archive with a large number of solutions), the algorithm is very time-consuming. In this paper, we propose a new lazy greedy algorithm exploiting the submodular property of the hypervolume indicator. The core idea is to avoid unnecessary hypervolume contribution calculation when finding the solution with the largest contribution. Experimental results show that the proposed algorithm is hundreds of times faster than the original greedy inclusion algorithm and several times faster than the fastest known greedy inclusion algorithm on many test problems.
Hypervolume is widely used in the evolutionary multi-objective optimization (EMO) field to evaluate the quality of a solution set. For a solution set with $mu$ solutions on a Pareto front, a larger hypervolume means a better solution set. Investigating the distribution of the solution set with the largest hypervolume is an important topic in EMO, which is the so-called hypervolume optimal $mu$-distribution. Theoretical results have shown that the $mu$ solutions are uniformly distributed on a linear Pareto front in two dimensions. However, the $mu$ solutions are not always uniformly distributed on a single-line Pareto front in three dimensions. They are only uniform when the single-line Pareto front has one constant objective. In this paper, we further investigate the hypervolume optimal $mu$-distribution in three dimensions. We consider the line- and plane-based Pareto fronts. For the line-based Pareto fronts, we extend the single-line Pareto front to two-line and three-line Pareto fronts, where each line has one constant objective. For the plane-based Pareto fronts, the linear triangular and inverted triangular Pareto fronts are considered. First, we show that the $mu$ solutions are not always uniformly distributed on the line-based Pareto fronts. The uniformity depends on how the lines are combined. Then, we show that a uniform solution set on the plane-based Pareto front is not always optimal for hypervolume maximization. It is locally optimal with respect to a $(mu+1)$ selection scheme. Our results can help researchers in the community to better understand and utilize the hypervolume indicator.
The encoding of solutions in black-box optimization is a delicate, handcrafted balance between expressiveness and domain knowledge -- between exploring a wide variety of solutions, and ensuring that those solutions are useful. Our main insight is that this process can be automated by generating a dataset of high-performing solutions with a quality diversity algorithm (here, MAP-Elites), then learning a representation with a generative model (here, a Variational Autoencoder) from that dataset. Our second insight is that this representation can be used to scale quality diversity optimization to higher dimensions -- but only if we carefully mix solutions generated with the learned representation and those generated with traditional variation operators. We demonstrate these capabilities by learning an low-dimensional encoding for the inverse kinematics of a thousand joint planar arm. The results show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites, and that, once solved, the produced encoding can be used for rapid optimization of novel, but similar, tasks. The presented techniques not only scale up quality diversity algorithms to high dimensions, but show that black-box optimization encodings can be automatically learned, rather than hand designed.
Partial differential equations (PDEs) are concise and understandable representations of domain knowledge, which are essential for deepening our understanding of physical processes and predicting future responses. However, the PDEs of many real-world problems are uncertain, which calls for PDE discovery. We propose the symbolic genetic algorithm (SGA-PDE) to discover open-form PDEs directly from data without prior knowledge about the equation structure. SGA-PDE focuses on the representation and optimization of PDE. Firstly, SGA-PDE uses symbolic mathematics to realize the flexible representation of any given PDE, transforms a PDE into a forest, and converts each function term into a binary tree. Secondly, SGA-PDE adopts a specially designed genetic algorithm to efficiently optimize the binary trees by iteratively updating the tree topology and node attributes. The SGA-PDE is gradient-free, which is a desirable characteristic in PDE discovery since it is difficult to obtain the gradient between the PDE loss and the PDE structure. In the experiment, SGA-PDE not only successfully discovered nonlinear Burgers equation, Korteweg-de Vries (KdV) equation, and Chafee-Infante equation, but also handled PDEs with fractional structure and compound functions that cannot be solved by conventional PDE discovery methods.
Humans interact through numerous channels to build and maintain social connections: they meet face-to-face, initiate phone calls or send text messages, and interact via social media. Although it is known that the network of physical contacts, for example, is distinct from the network arising from communication events via phone calls and instant messages, the extent to which these networks differ is not clear. In fact, the network structure of these channels shows large structural variations. Each network of interactions, however, contains both central and peripheral individuals: central members are characterized by higher connectivity and can reach a high fraction of the network within a low number of connections, contrary to the nodes on the periphery. Here we show that the various channels account for diverse relationships between pairs of individuals and the corresponding interaction patterns across channels differ to an extent that hinders the simple reduction of social ties to a single layer. Furthemore, the origin and purpose of each network also determine the role of their respective central members: highly connected individuals in the person-to-person networks interact with their environment in a regular manner, while members central in the social communication networks display irregular behavior with respect to their physical contacts and are more active through rare, social events. These results suggest that due to the inherently different functions of communication channels, each one favors different social behaviors and different strategies for interacting with the environment. Our findings can facilitate the understanding of the varying roles and impact individuals have on the population, which can further shed light on the prediction and prevention of epidemic outbreaks, or information propagation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا