No Arabic abstract
Hypervolume is widely used in the evolutionary multi-objective optimization (EMO) field to evaluate the quality of a solution set. For a solution set with $mu$ solutions on a Pareto front, a larger hypervolume means a better solution set. Investigating the distribution of the solution set with the largest hypervolume is an important topic in EMO, which is the so-called hypervolume optimal $mu$-distribution. Theoretical results have shown that the $mu$ solutions are uniformly distributed on a linear Pareto front in two dimensions. However, the $mu$ solutions are not always uniformly distributed on a single-line Pareto front in three dimensions. They are only uniform when the single-line Pareto front has one constant objective. In this paper, we further investigate the hypervolume optimal $mu$-distribution in three dimensions. We consider the line- and plane-based Pareto fronts. For the line-based Pareto fronts, we extend the single-line Pareto front to two-line and three-line Pareto fronts, where each line has one constant objective. For the plane-based Pareto fronts, the linear triangular and inverted triangular Pareto fronts are considered. First, we show that the $mu$ solutions are not always uniformly distributed on the line-based Pareto fronts. The uniformity depends on how the lines are combined. Then, we show that a uniform solution set on the plane-based Pareto front is not always optimal for hypervolume maximization. It is locally optimal with respect to a $(mu+1)$ selection scheme. Our results can help researchers in the community to better understand and utilize the hypervolume indicator.
In order to minimize the impact of LC (lane-changing) maneuver, this research proposes a novel LC algorithm in mixed traffic. The LC maneuver is parsed into two stages: one is from the decision point to the execution point (finding a suitable gap), and the other is from the execution point to the end point (performing the LC maneuver). Thereafter, a multiobjective optimization problem integrating these two stages is constructed, in which the comfort, efficiency and safety of the LC vehicle and the surrounding vehicles are simultaneously considered. Through introducing the NSGA-II (Non-dominated Sorting Genetic Algorithm), the pareto-optimal frontier and pareto-optimal solution of this problem is obtained. The nearest point of the frontier to the origin is used as the final solution. Through the micro-level analysis of the operating status of each vehicle, macro-level analysis of the traffic flow state within the LC area, and the sensitivity analysis of pareto-optimal frontier, we verify the performance of our proposed algorithm. Results demonstrate that compared with the existing algorithm, our algorithm could provide the optimal execution point and trajectory with the least impact on surroundings. The operation status of the traffic flow within the LC area has been significantly improved. We anticipate that this research could provide valuable insights into autonomous driving technology.
Multi-Task Learning (MTL) is a well-established paradigm for training deep neural network models for multiple correlated tasks. Often the task objectives conflict, requiring trade-offs between them during model building. In such cases, MTL models can use gradient-based multi-objective optimization (MOO) to find one or more Pareto optimal solutions. A common requirement in MTL applications is to find an {it Exact} Pareto optimal (EPO) solution, which satisfies user preferences with respect to task-specific objective functions. Further, to improve model generalization, various constraints on the weights may need to be enforced during training. Addressing these requirements is challenging because it requires a search direction that allows descent not only towards the Pareto front but also towards the input preference, within the constraints imposed and in a manner that scales to high-dimensional gradients. We design and theoretically analyze such search directions and develop the first scalable algorithm, with theoretical guarantees of convergence, to find an EPO solution, including when box and equality constraints are imposed. Our unique method combines multiple gradient descent with carefully controlled ascent to traverse the Pareto front in a principled manner, making it robust to initialization. This also facilitates systematic exploration of the Pareto front, that we utilize to approximate the Pareto front for multi-criteria decision-making. Empirical results show that our algorithm outperforms competing methods on benchmark MTL datasets and MOO problems.
Evolution has produced an astonishing diversity of species, each filling a different niche. Algorithms like MAP-Elites mimic this divergent evolutionary process to find a set of behaviorally diverse but high-performing solutions, called the elites. Our key insight is that species in nature often share a surprisingly large part of their genome, in spite of occupying very different niches; similarly, the elites are likely to be concentrated in a specific elite hypervolume whose shape is defined by their common features. In this paper, we first introduce the elite hypervolume concept and propose two metrics to characterize it: the genotypic spread and the genotypic similarity. We then introduce a new variation operator, called directional variation, that exploits interspecies (or inter-elites) correlations to accelerate the MAP-Elites algorithm. We demonstrate the effectiveness of this operator in three problems (a toy function, a redundant robotic arm, and a hexapod robot).
Subset selection is a popular topic in recent years and a number of subset selection methods have been proposed. Among those methods, hypervolume subset selection is widely used. Greedy hypervolume subset selection algorithms can achieve good approximations to the optimal subset. However, when the candidate set is large (e.g., an unbounded external archive with a large number of solutions), the algorithm is very time-consuming. In this paper, we propose a new lazy greedy algorithm exploiting the submodular property of the hypervolume indicator. The core idea is to avoid unnecessary hypervolume contribution calculation when finding the solution with the largest contribution. Experimental results show that the proposed algorithm is hundreds of times faster than the original greedy inclusion algorithm and several times faster than the fastest known greedy inclusion algorithm on many test problems.
We present a model of a topological semimetal in three dimensions (3D) whose energy spectrum exhibits a nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke ring. Contrary to a Weyl point node spectrum, the vortex ring gives rise to skyrmionic pseudospin patterns in cuts on both sides of the nodal ring plane; this pattern covers the full Brillouin zone, thus leading to a new, `maximal, anomalous Hall effect in a 3D semimetal. Tuning a model parameter shrinks the vortex ring until it vanishes, giving way to a pair of Weyl nodes of opposite chirality. This establishes a connection between two distinct momentum-space topologies - that of a vortex ring (a circle of singularity) and a monopole-anti-monopole pair (two point singularities). We present the model both as a low-energy continuum and a two-band tight-binding lattice model. Its simplicity permits an analytical computation of its Landau level spectrum.