Do you want to publish a course? Click here

Time-dependent lead-lag relationship between the onshore and offshore Renminbi exchange rates

144   0   0.0 ( 0 )
 Added by Wei-Xing Zhou
 Publication date 2018
  fields Financial
and research's language is English
 Authors Hai-Chuan Xu




Ask ChatGPT about the research

We employ the thermal optimal path method to explore both the long-term and short-term interaction patterns between the onshore CNY and offshore CNH exchange rates (2012-2015). For the daily data, the CNY and CNH exchange rates show a weak alternate lead-lag structure in most of the time periods. When CNY and CNH display a large disparity, the lead-lag relationship is uncertain and depends on the prevailing market factors. The minute-scale interaction pattern between the CNY and CNH exchange rates change over time according to different market situations. We find that US dollar appreciation is associated with a lead-lag relationship running from offshore to onshore, while a (contrarian) Renminbi appreciation is associated with a lead-lag relationship running from onshore to offshore. These results are robust with respect to different sub-sample analyses and variations of the key smoothing parameter of the TOP method.



rate research

Read More

192 - Hao Meng 2014
We present the symmetric thermal optimal path (TOPS) method to determine the time-dependent lead-lag relationship between two stochastic time series. This novel version of the previously introduced TOP method alleviates some inconsistencies by imposing that the lead-lag relationship should be invariant with respect to a time reversal of the time series after a change of sign. This means that, if `$X$ comes before $Y$, this transforms into `$Y$ comes before $X$ under a time reversal. We show that previously proposed bootstrap test lacks power and leads too often to a lack of rejection of the null that there is no lead-lag correlation when it is present. We introduce instead two novel tests. The first the free energy p-value $rho$ criterion quantifies the probability that a given lead-lag structure could be obtained from random time series with similar characteristics except for the lead-lag information. The second self-consistent test embodies the idea that, for the lead-lag path to be significant, synchronizing the two time series using the time varying lead-lag path should lead to a statistically significant correlation. We perform intensive synthetic tests to demonstrate their performance and limitations. Finally, we apply the TOPS method with the two new tests to the time dependent lead-lag structures of house price and monetary policy of the United Kingdom (UK) and United States (US) from 1991 to 2011. The TOPS approach stresses the importance of accounting for change of regimes, so that similar pieces of information or policies may have drastically different impacts and developments, conditional on the economic, financial and geopolitical conditions. This study reinforces the view that the hypothesis of statistical stationarity is highly questionable.
According to the leading models in modern finance, the presence of intraday lead-lag relationships between financial assets is negligible in efficient markets. With the advance of technology, however, markets have become more sophisticated. To determine whether this has resulted in an improved market efficiency, we investigate whether statistically significant lagged correlation relationships exist in financial markets. We introduce a numerical method to statistically validate links in correlation-based networks, and employ our method to study lagged correlation networks of equity returns in financial markets. Crucially, our statistical validation of lead-lag relationships accounts for multiple hypothesis testing over all stock pairs. In an analysis of intraday transaction data from the periods 2002--2003 and 2011--2012, we find a striking growth in the networks as we increase the frequency with which we sample returns. We compute how the number of validated links and the magnitude of correlations change with increasing sampling frequency, and compare the results between the two data sets. Finally, we compare topological properties of the directed correlation-based networks from the two periods using the in-degree and out-degree distributions and an analysis of three-node motifs. Our analysis suggests a growth in both the efficiency and instability of financial markets over the past decade.
We introduce a method to infer lead-lag networks of agents actions in complex systems. These networks open the way to both microscopic and macroscopic states prediction in such systems. We apply this method to trader-resolved data in the foreign exchange market. We show that these networks are remarkably persistent, which explains why and how order flow prediction is possible from trader-resolved data. In addition, if traders actions depend on past prices, the evolution of the average price paid by traders may also be predictable. Using random forests, we verify that the predictability of both the sign of order flow and the direction of average transaction price is strong for retail investors at an hourly time scale, which is of great relevance to brokers and order matching engines. Finally, we argue that the existence of trader lead-lag networks explains in a self-referential way why a given trader becomes active, which is in line with the fact that most trading activity has an endogenous origin.
The relationship between the size and the variance of firm growth rates is known to follow an approximate power-law behavior $sigma(S) sim S^{-beta(S)}$ where $S$ is the firm size and $beta(S)approx 0.2$ is an exponent weakly dependent on $S$. Here we show how a model of proportional growth which treats firms as classes composed of various number of units of variable size, can explain this size-variance dependence. In general, the model predicts that $beta(S)$ must exhibit a crossover from $beta(0)=0$ to $beta(infty)=1/2$. For a realistic set of parameters, $beta(S)$ is approximately constant and can vary in the range from 0.14 to 0.2 depending on the average number of units in the firm. We test the model with a unique industry specific database in which firm sales are given in terms of the sum of the sales of all their products. We find that the model is consistent with the empirically observed size-variance relationship.
137 - A.N.Sekar Iyengar 2009
We have presented a novel technique of detecting intermittencies in a financial time series of the foreign exchange rate data of U.S.- Euro dollar(US/EUR) using a combination of both statistical and spectral techniques. This has been possible due to Continuous Wavelet Transform (CWT) analysis which has been popularly applied to fluctuating data in various fields science and engineering and is also being tried out in finance and economics. We have been able to qualitatively identify the presence of nonlinearity and chaos in the time series of the foreign exchange rates for US/EURO (United States dollar to Euro Dollar) and US/UK (United States dollar to United Kingdom Pound) currencies. Interestingly we find that for the US-INDIA(United States dollar to Indian Rupee) foreign exchange rates, no such chaotic dynamics is observed. This could be a result of the government control over the foreign exchange rates, instead of the market controlling them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا