No Arabic abstract
We present the symmetric thermal optimal path (TOPS) method to determine the time-dependent lead-lag relationship between two stochastic time series. This novel version of the previously introduced TOP method alleviates some inconsistencies by imposing that the lead-lag relationship should be invariant with respect to a time reversal of the time series after a change of sign. This means that, if `$X$ comes before $Y$, this transforms into `$Y$ comes before $X$ under a time reversal. We show that previously proposed bootstrap test lacks power and leads too often to a lack of rejection of the null that there is no lead-lag correlation when it is present. We introduce instead two novel tests. The first the free energy p-value $rho$ criterion quantifies the probability that a given lead-lag structure could be obtained from random time series with similar characteristics except for the lead-lag information. The second self-consistent test embodies the idea that, for the lead-lag path to be significant, synchronizing the two time series using the time varying lead-lag path should lead to a statistically significant correlation. We perform intensive synthetic tests to demonstrate their performance and limitations. Finally, we apply the TOPS method with the two new tests to the time dependent lead-lag structures of house price and monetary policy of the United Kingdom (UK) and United States (US) from 1991 to 2011. The TOPS approach stresses the importance of accounting for change of regimes, so that similar pieces of information or policies may have drastically different impacts and developments, conditional on the economic, financial and geopolitical conditions. This study reinforces the view that the hypothesis of statistical stationarity is highly questionable.
We employ the thermal optimal path method to explore both the long-term and short-term interaction patterns between the onshore CNY and offshore CNH exchange rates (2012-2015). For the daily data, the CNY and CNH exchange rates show a weak alternate lead-lag structure in most of the time periods. When CNY and CNH display a large disparity, the lead-lag relationship is uncertain and depends on the prevailing market factors. The minute-scale interaction pattern between the CNY and CNH exchange rates change over time according to different market situations. We find that US dollar appreciation is associated with a lead-lag relationship running from offshore to onshore, while a (contrarian) Renminbi appreciation is associated with a lead-lag relationship running from onshore to offshore. These results are robust with respect to different sub-sample analyses and variations of the key smoothing parameter of the TOP method.
This paper proposes the sample path generation method for the stochastic volatility version of CGMY process. We present the Monte-Carlo method for European and American option pricing with the sample path generation and calibrate model parameters to the American style S&P 100 index options market, using the least square regression method. Moreover, we discuss path-dependent options such as Asian and Barrier options.
According to the leading models in modern finance, the presence of intraday lead-lag relationships between financial assets is negligible in efficient markets. With the advance of technology, however, markets have become more sophisticated. To determine whether this has resulted in an improved market efficiency, we investigate whether statistically significant lagged correlation relationships exist in financial markets. We introduce a numerical method to statistically validate links in correlation-based networks, and employ our method to study lagged correlation networks of equity returns in financial markets. Crucially, our statistical validation of lead-lag relationships accounts for multiple hypothesis testing over all stock pairs. In an analysis of intraday transaction data from the periods 2002--2003 and 2011--2012, we find a striking growth in the networks as we increase the frequency with which we sample returns. We compute how the number of validated links and the magnitude of correlations change with increasing sampling frequency, and compare the results between the two data sets. Finally, we compare topological properties of the directed correlation-based networks from the two periods using the in-degree and out-degree distributions and an analysis of three-node motifs. Our analysis suggests a growth in both the efficiency and instability of financial markets over the past decade.
This paper analyzes the informational efficiency of oil market during the last three decades, and examines changes in informational efficiency with major geopolitical events, such as terrorist attacks, financial crisis and other important events. The series under study is the daily prices of West Texas Intermediate (WTI) in USD/BBL, commonly used as a benchmark in oil pricing. The analysis is performed using information-theory-derived quantifiers, namely permutation entropy and permutation statistical complexity. These metrics allow capturing the hidden structure in the market dynamics, and allow discriminating different degrees of informational efficiency. We find that some geopolitical events impact on the underlying dynamical structure of the market.
Centralized monetary policy, leading to persistent inflation, is often inconsistent, untrustworthy, and unpredictable. Algorithmic stable coins enabled by blockchain technology are promising in solving this problem. Algorithmic stable coins utilize a monetary policy that is entirely rule-based. However, there is little understanding about how to optimize the rule. We propose a model that trade-offs between the price and supply stability. We further study the comparative statistics by varying several design features. Finally, we discuss the empirical implications and further research for industry applications.