Do you want to publish a course? Click here

The Size Variance Relationship of Business Firm Growth Rates

136   0   0.0 ( 0 )
 Added by Linda Ponta
 Publication date 2009
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

The relationship between the size and the variance of firm growth rates is known to follow an approximate power-law behavior $sigma(S) sim S^{-beta(S)}$ where $S$ is the firm size and $beta(S)approx 0.2$ is an exponent weakly dependent on $S$. Here we show how a model of proportional growth which treats firms as classes composed of various number of units of variable size, can explain this size-variance dependence. In general, the model predicts that $beta(S)$ must exhibit a crossover from $beta(0)=0$ to $beta(infty)=1/2$. For a realistic set of parameters, $beta(S)$ is approximately constant and can vary in the range from 0.14 to 0.2 depending on the average number of units in the firm. We test the model with a unique industry specific database in which firm sales are given in terms of the sum of the sales of all their products. We find that the model is consistent with the empirically observed size-variance relationship.



rate research

Read More

P.W. Anderson proposed the concept of complexity in order to describe the emergence and growth of macroscopic collective patterns out of the simple interactions of many microscopic agents. In the physical sciences this paradigm was implemented systematically and confirmed repeatedly by successful confrontation with reality. In the social sciences however, the possibilities to stage experiments to validate it are limited. During the 90s a series of dramatic political and economic events have provided the opportunity to do so. We exploit the resulting empirical evidence to validate a simple agent based alternative to the classical logistic dynamics. The post-liberalization empirical data from Poland confirm the theoretical prediction that the dynamics is dominated by singular rare events which insure the resilience and adaptability of the system. We have shown that growth is led by few singular growth centers (Figure 1), that initially developed at a tremendous rate (Figure3), followed by a diffusion process to the rest of the country and leading to a positive growth rate uniform across the counties. In addition to the interdisciplinary unifying potential of our generic formal approach, the present work reveals the strong causal ties between the softer social conditions and their hard economic consequences.
In this study, we attempted to determine how eigenvalues change, according to random matrix theory (RMT), in stock market data as the number of stocks comprising the correlation matrix changes. Specifically, we tested for changes in the eigenvalue properties as a function of the number and type of stocks in the correlation matrix. We determined that the value of the eigenvalue increases in proportion with the number of stocks. Furthermore, we noted that the largest eigenvalue maintains its identical properties, regardless of the number and type, whereas other eigenvalues evidence different features.
We construct a theoretical model for equilibrium distribution of workers across sectors with different labor productivity, assuming that a sector can accommodate a limited number of workers which depends only on its productivity. A general formula for such distribution of productivity is obtained, using the detail-balance condition necessary for equilibrium in the Ehrenfest-Brillouin model. We also carry out an empirical analysis on the average number of workers in given productivity sectors on the basis of an exhaustive dataset in Japan. The theoretical formula succeeds in explaining the two distinctive observational facts in a unified way, that is, a Boltzmann distribution with negative temperature on low-to-medium productivity side and a decreasing part in a power-law form on high productivity side.
145 - Xi-Yuan Qian 2015
When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using classic detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross-correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multi-scale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross-correlation between crude oil and gold futures by taking into consideration the impact of the US dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the MF-DCCA method fails.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا