Do you want to publish a course? Click here

Preliminary experiments demonstrating a directed Maxwells granular demon

53   0   0.0 ( 0 )
 Added by Ernesto Altshuler
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we design a system of two symmetrical containers communicated by an aperture, in which a granular gas of glass spheres is created by shaking laterally the whole system in a planetary mill. If the aperture consists in a symmetrical hole, the two halves end up with the same number of grains after some time when initially all particles are into in one of the containers. However, when a funnel-like aperture is used, a robust symmetry breaking is induced: if all the grains are originally deposited in the container facing the wide side 95% of the grains pass to the opposite side in a relatively small time.



rate research

Read More

The first direct experimental replication of the Maxwell Demon thought experiment is outlined. The experiment determines the velocity/kinetic energy distribution of the particles in a sample by a novel interpretation of the results from a standard time-of-flight (TOF) small angle neutron scattering (SANS) procedure. Perspex at 293 K was subjected to neutrons at 82.2 K. The key result is a TOF velocity distribution curve that is a direct spatial and time-dependent microscopic probe of the velocity distribution of the Perspex nuclei at 293 K. Having this curve, one can duplicate the Demons approach by selecting neutrons at known kinetic energies. One example is given: namely, two reservoirs -- hot and cold reservoirs -- were generated from the 293 K source without disturbing its original 293 K energy distribution.
We propose and analyze Maxwells demon based on a single qubit with avoided level crossing. Its operation cycle consists of adiabatic drive to the point of minimum energy separation, measurement of the qubit state, and conditional feedback. We show that the heat extracted from the bath at temperature $T$ can ideally approach the Landauer limit of $k_BTln 2$ per cycle even in the quantum regime. Practical demon efficiency is limited by the interplay of Landau-Zener transitions and coupling to the bath. We suggest that an experimental demonstration of the demon is fully feasible using one of the standard superconducting qubits.
144 - H. Dong , D.Z. Xu , C.P. Sun 2010
We study the physical mechanism of Maxwells Demon (MD) helping to do extra work in thermodynamic cycles, by describing measurement of position, insertion of wall and information erasing of MD in a quantum mechanical fashion. The heat engine is exemplified with one molecule confined in an infinitely deep square potential inserted with a movable solid wall, while the MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. It is discovered that the the MD with quantum coherence or on a lower temperature than that of the heat bath of the particle would enhance the ability of the whole work substance formed by the system plus the MD to do work outside. This observation reveals that the role of the MD essentially is to drive the whole work substance being off equilibrium, or equivalently working with an effective temperature difference. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts the common sense on Szilard heat engine (SHE). The quantum SHEs efficiency is evaluated in detail to prove the validity of second law of thermodynamics.
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwells demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using a feedback scheme. We investigate the electrical work produced by the demon and find a non-Gaussian work distribution. To illustrate the effect of a realistic charge detection scheme, we develop a model taking into account noise as well as a finite delay time, and show that an experimental realization is feasible with present day technology. Depending on the accuracy of the measurement, the system is operated as an implementation of Maxwells demon or a single-electron pump.
In the case of fully chaotic systems the distribution of the Poincarerecurrence times is an exponential whose decay rate is the Kolmogorov-Sinai(KS) entropy.We address the discussion of the same problem, the connection between dynamics and thermodynamics,in the case of sporadic randomness,using the Manneville map as a prototype of this class of processes. We explore the possibility of relating the distribution of Poincare recurrence times to `thermodynamics,in the sense of the KS entropy,also in the case of an inverse power law. This is the dynamic property that Zaslavsly [Phys.Today(8), 39(1999)] finds to be responsible for a striking deviation from ordinary statistical mechanics under the form of Maxwells Demon effect. We show that this way of estabi- lishing a connection between thermodynamics and dynamics is valid only in the case of strong chaos. In the case of sporadic randomness, resulting at long times in the Levy diffusion processes,the sensitivity to initial conditions is initially an inverse pow erlaw,but it becomes exponential in the long-time scale, whereas the distribution of Poincare times keeps its inverse power law forever. We show that a nonextensive thermodynamics would imply the Maxwells Demon effect to be determined by memory and thus to be temporary,in conflict with the dynamic approach to Levy statistics. The adoption of heuristic arguments indicates that this effect,is possible, as a form of genuine equilibrium,after completion of the process of memory erasure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا