Do you want to publish a course? Click here

Long lifetime of thermally-excited magnons in bulk yttrium iron garnet

323   0   0.0 ( 0 )
 Added by Roberto Myers
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin currents are generated within the bulk of magnetic materials due to heat flow, an effect called intrinsic spin-Seebeck. This bulk bosonic spin current consists of a diffusing thermal magnon cloud, parametrized by the magnon chemical potential ($mu_{m}$), with a diffusion length of several microns in yttrium iron garnet (YIG). Transient opto-thermal measurements of the spin-Seebeck effect (SSE) as a function of temperature reveal the time evolution of $mu_{m}$ due to intrinsic SSE in YIG. The interface SSE develops at times < 2 ns while the intrinsic SSE signal continues to evolve at times > 500 $mu$s, dominating the temperature dependence of SSE in bulk YIG. Time-dependent SSE data are fit to a multi-temperature model of coupled spin/heat transport using finite element method (FEM), where the magnon spin lifetime ($tau$) and magnon-phonon thermalization time ($tau_{mp}$) are used as fit parameters. From 300 K to 4 K, $tau_{mp}$ varies from 1 to 10 ns, whereas $tau$ varies from 2 to 60 $mu$s with the spin lifetime peaking at 90 K. At low temperature, a reduction in $tau$ is observed consistent with impurity relaxation reported in ferromagnetic resonance measurements. These results demonstrate that the thermal magnon cloud in YIG contains extremely low frequency magnons (~10 GHz) providing spectral insight to the microscopic scattering processes involved in magnon spin/heat diffusion.



rate research

Read More

110 - X. J. Zhou , G. Y. Shi , J. H. Han 2017
Spin information carried by magnons is attractive for computing technology and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical picture for spin transport in conductors. Here we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport
The longitudinal spin Seebeck effect refers to the generation of a spin current when heat flows across a normal metal/magnetic insulator interface. Until recently, most explanations of the spin Seebeck effect use the interfacial temperature difference as the conversion mechanism between heat and spin fluxes. However, recent theoretical and experimental works claim that a magnon spin current is generated in the bulk of a magnetic insulator even in the absence of an interface. This is the so-called intrinsic spin Seebeck effect. Here, by utilizing a non-local spin Seebeck geometry, we provide additional evidence that the total magnon spin current in the ferrimagnetic insulator yttrium iron garnet (YIG) actually contains two distinct terms: one proportional to the gradient in the magnon chemical potential (pure magnon spin diffusion), and a second proportional to the gradient in magnon temperature ($ abla T_m$). We observe two characteristic decay lengths for magnon spin currents in YIG with distinct temperature dependences: a temperature independent decay length of ~ 10 ${mu}$m consistent with earlier measurements of pure ($ abla T_m = 0$) magnon spin diffusion, and a longer decay length ranging from about 20 ${mu}$m around 250 K and exceeding 80 ${mu}$m at 10 K. The coupled spin-heat transport processes are modeled using a finite element method revealing that the longer range magnon spin current is attributable to the intrinsic spin Seebeck effect ($ abla T_m eq 0$), whose length scale increases at lower temperatures in agreement with our experimental data.
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves. In this work, we experimentally evidence the interfacial DMI in a 7~nm-thick YIG film by measuring the nonreciprocal spin wave propagation in terms of frequency, amplitude and most importantly group velocities using all electrical spin-wave spectroscopy. The velocities of propagating spin waves show chirality among three vectors, i.e. the film normal direction, applied field and spin-wave wavevector. By measuring the asymmetric group velocities, we extract a DMI constant of 16~$mu$J/m$^{2}$ which we independently confirm by Brillouin light scattering. Thickness-dependent measurements reveal that the DMI originates from the oxide interface between the YIG and garnet substrate. The interfacial DMI discovered in the ultrathin YIG films is of key importance for functional chiral magnonics as ultra-low spin-wave damping can be achieved.
A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required, such as magnetic tubes and spirals. Furthermore, the materials currently used to assemble these structures are predominantly magnetic metals that do not allow to study the magnetic response of the system separately from the electronic one. In the field of spintronics, the prototypical material used for such experiments is the ferrimagnetic insulator yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG). YIG is one of the best materials especially for magnonic studies due to its low Gilbert damping. Here, we report the first successful fabrication of YIG thin films via atomic layer deposition. To that end we utilize a supercycle approach based on the combination of sub-nanometer thin layers of the binary systems Fe$_2$O$_3$ and Y$_2$O$_3$ in the correct atomic ratio on Y$_3$Al$_5$O$_{12}$ substrates with a subsequent annealing step. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a good crystalline quality as well as magnetic properties comparable to other deposition techniques. One of the outstanding characteristics of atomic layer deposition is its ability to conformally coat arbitrarily-shaped substrates. ALD hence is the ideal deposition technique to grant an extensive freedom in choosing the shape of the magnetic system. The atomic layer deposition of YIG enables the fabrication of novel three dimensional magnetic nanostructures, which in turn can be utilized for experimentally investigating the phenomena predicted in those structures.
269 - Martin Collet 2015
Spin-orbit effects [1-4] have the potential of radically changing the field of spintronics by allowing transfer of spin angular momentum to a whole new class of materials. In a seminal letter to Nature [5], Kajiwara et al. showed that by depositing Platinum (Pt, a normal metal) on top of a 1.3 $mu$m thick Yttrium Iron Garnet (YIG, a magnetic insulator), one could effectively transfer spin angular momentum through the interface between these two different materials. The outstanding feature was the detection of auto-oscillation of the YIG when enough dc current was passed in the Pt. This finding has created a great excitement in the community for two reasons: first, one could control electronically the damping of insulators, which can offer improved properties compared to metals, and here YIG has the lowest damping known in nature; second, the damping compensation could be achieved on very large objects, a particularly relevant point for the field of magnonics [6,7] whose aim is to use spin-waves as carriers of information. However, the degree of coherence of the observed auto-oscillations has not been addressed in ref. [5]. In this work, we emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current. This requires to reduce both the thickness and lateral size in order to reach full damping compensation [8] , and we show clear evidence of coherent spin-orbit torque induced auto-oscillation in micron-sized YIG discs of thickness 20 nm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا