Do you want to publish a course? Click here

Atomic Layer Deposition of Yttrium Iron Garnet Thin Films for 3D Magnetic Structures

76   0   0.0 ( 0 )
 Added by Michaela Lammel
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required, such as magnetic tubes and spirals. Furthermore, the materials currently used to assemble these structures are predominantly magnetic metals that do not allow to study the magnetic response of the system separately from the electronic one. In the field of spintronics, the prototypical material used for such experiments is the ferrimagnetic insulator yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG). YIG is one of the best materials especially for magnonic studies due to its low Gilbert damping. Here, we report the first successful fabrication of YIG thin films via atomic layer deposition. To that end we utilize a supercycle approach based on the combination of sub-nanometer thin layers of the binary systems Fe$_2$O$_3$ and Y$_2$O$_3$ in the correct atomic ratio on Y$_3$Al$_5$O$_{12}$ substrates with a subsequent annealing step. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a good crystalline quality as well as magnetic properties comparable to other deposition techniques. One of the outstanding characteristics of atomic layer deposition is its ability to conformally coat arbitrarily-shaped substrates. ALD hence is the ideal deposition technique to grant an extensive freedom in choosing the shape of the magnetic system. The atomic layer deposition of YIG enables the fabrication of novel three dimensional magnetic nanostructures, which in turn can be utilized for experimentally investigating the phenomena predicted in those structures.



rate research

Read More

110 - X. J. Zhou , G. Y. Shi , J. H. Han 2017
Spin information carried by magnons is attractive for computing technology and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical picture for spin transport in conductors. Here we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves. In this work, we experimentally evidence the interfacial DMI in a 7~nm-thick YIG film by measuring the nonreciprocal spin wave propagation in terms of frequency, amplitude and most importantly group velocities using all electrical spin-wave spectroscopy. The velocities of propagating spin waves show chirality among three vectors, i.e. the film normal direction, applied field and spin-wave wavevector. By measuring the asymmetric group velocities, we extract a DMI constant of 16~$mu$J/m$^{2}$ which we independently confirm by Brillouin light scattering. Thickness-dependent measurements reveal that the DMI originates from the oxide interface between the YIG and garnet substrate. The interfacial DMI discovered in the ultrathin YIG films is of key importance for functional chiral magnonics as ultra-low spin-wave damping can be achieved.
A dense system of independent oscillators, connected only by their interaction with the same cavity excitation mode, will radiate coherently, which effect is termed superradiance. In several cases, especially if the density of oscillators is high, the superradiance may dominate the intrinsic relaxation processes. This limit can be achieved, e.g., with cyclotron resonance in two-dimensional electron gases. In those experiments, the cyclotron resonance is coupled to the electric field of light, while the oscillator density can be easily controlled by varying the gate voltage. However, in the case of magnetic oscillators, to achieve the dominance of superradiance is more tricky, as material parameters limit the oscillator density, and the magnetic coupling to the light wave is rather small. Here we present quasi-optical magnetic resonance experiments on thin films of yttrium iron garnet. Due to the simplicity of experimental geometry, the intrinsic damping and the superradiance can be easily separated in the transmission spectra. We show that with increasing film thickness, the losses due to coherent radiation prevail the systems internal broadening.
63 - O. Wid , J. Bauer , A. Muller 2016
We have investigated the unidirectional spin wave heat conveyer effect in sub-micron thick yttrium iron garnet (YIG) films using lock-in thermography (LIT). Although the effect is small in thin layers this technique allows us to observe asymmetric heat transport by magnons which leads to asymmetric temperature profiles differing by several mK on both sides of the exciting antenna, respectively. Comparison of Damon-Eshbach and backward volume modes shows that the unidirectional heat flow is indeed due to non-reciprocal spin-waves. Because of the finite linewidth, small asymmetries can still be observed when only the uniform mode of ferromagnetic resonance is excited. The latter is of extreme importance for example when measuring the inverse spin-Hall effect because the temperature differences can result in thermovoltages at the contacts. Because of the non-reciprocity these thermovoltages reverse their sign with a reversal of the magnetic field which is typically deemed the signature of the inverse spin-Hall voltage.
We report a study on the electrical properties of 19 nm thick Yttrium Iron Garnet (YIG) films grown by liquid phase epitaxy. The electrical conductivity and Hall coefficient are measured in the high temperature range [300,400]~K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band-gap of $E_gapprox 2$ eV, indicating that epitaxial YIG ultra-thin films behave as large gap semiconductor, and not as electrical insulator. The resistivity drops to about $5times 10^3$~$Omega cdot text{cm}$ at $T=400$ K. We also infer the Hall mobility, which is found to be positive ($p$-type) at 5 cm$^2$/(V$cdot$sec) and about independent of temperature. We discuss the consequence for non-local transport experiments performed on YIG at room temperature. These electrical properties are responsible for an offset voltage (independent of the in-plane field direction) whose amplitude, odd in current, grows exponentially with current due to Joule heating. These electrical properties also induce a sensitivity to the perpendicular component of the magnetic field through the Hall effect. In our lateral device, a thermoelectric offset voltage is produced by a temperature gradient along the wire direction proportional to the perpendicular component of the magnetic field (Righi-Leduc effects).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا