Do you want to publish a course? Click here

Towards a Socially Optimal Multi-Modal Routing Platform

111   0   0.0 ( 0 )
 Added by Chinmaya Samal
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The increasing rate of urbanization has added pressure on the already constrained transportation networks in our communities. Ride-sharing platforms such as Uber and Lyft are becoming a more commonplace, particularly in urban environments. While such services may be deemed more convenient than riding public transit due to their on-demand nature, reports show that they do not necessarily decrease the congestion in major cities. One of the key problems is that typically mobility decision support systems focus on individual utility and react only after congestion appears. In this paper, we propose socially considerate multi-modal routing algorithms that are proactive and consider, via predictions, the shared effect of riders on the overall efficacy of mobility services. We have adapted the MATSim simulator framework to incorporate the proposed algorithms present a simulation analysis of a case study in Nashville, Tennessee that assesses the effects of our routing models on the traffic congestion for different levels of penetration and adoption of socially considerate routes. Our results indicate that even at a low penetration (social ratio), we are able to achieve an improvement in system-level performance.



rate research

Read More

Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward. In this paper, to effectively and efficiently recruit sufficient number of mobile users, i.e., participants, we investigate an optimal incentive mechanism of a crowdsensing service provider. We apply a two-stage Stackelberg game to analyze the participation level of the mobile users and the optimal incentive mechanism of the crowdsensing service provider using backward induction. In order to motivate the participants, the incentive is designed by taking into account the social network effects from the underlying mobile social domain. For example, in a crowdsensing-based road traffic information sharing application, a user can get a better and accurate traffic report if more users join and share their road information. We derive the analytical expressions for the discriminatory incentive as well as the uniform incentive mechanisms. To fit into practical scenarios, we further formulate a Bayesian Stackelberg game with incomplete information to analyze the interaction between the crowdsensing service provider and mobile users, where the social structure information (the social network effects) is uncertain. The existence and uniqueness of the Bayesian Stackelberg equilibrium are validated by identifying the best response strategies of the mobile users. Numerical results corroborate the fact that the network effects tremendously stimulate higher mobile participation level and greater revenue of the crowdsensing service provider. In addition, the social structure information helps the crowdsensing service provider to achieve greater revenue gain.
The paper studies the routing in the network shared by several users. Each user seeks to optimize either its own performance or some combination between its own performance and that of other users, by controlling the routing of its given flow demand. We parameterize the degree of cooperation which allows to cover the fully non-cooperative behavior, the fully cooperative behavior, and even more, the fully altruistic behavior, all these as special cases of the parameters choice. A large part of the work consists in exploring the impact of the degree of cooperation on the equilibrium. Our first finding is to identify multiple Nash equilibria with cooperative behavior that do not occur in the non-cooperative case under the same conditions (cost, demand and topology). We then identify Braess like paradox (in which adding capacity or adding a link to a network results in worse performance to all users) and study the impact of the degree of cooperation on it. We identify another type of paradox in cooperation scenario. We identify that when we increase the degree of cooperation of a user while other users keep unchanged their degree of cooperation, leads to an improvement in performance of that user. We then pursue the exploration and carry it on to the setting of Mixed equilibrium (i.e. some users are non atomic-they have infinitesimally small demand, and other have finite fixed demand). We finally obtain some theoretical results that show that for low degree of cooperation the equilibrium is unique, confirming the results of our numerical study.
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. With TDW, users can simulate high-fidelity sensory data and physical interactions between mobile agents and objects in a wide variety of rich 3D environments. TDW has several unique properties: 1) realtime near photo-realistic image rendering quality; 2) a library of objects and environments with materials for high-quality rendering, and routines enabling user customization of the asset library; 3) generative procedures for efficiently building classes of new environments 4) high-fidelity audio rendering; 5) believable and realistic physical interactions for a wide variety of material types, including cloths, liquid, and deformable objects; 6) a range of avatar types that serve as embodiments of AI agents, with the option for user avatar customization; and 7) support for human interactions with VR devices. TDW also provides a rich API enabling multiple agents to interact within a simulation and return a range of sensor and physics data representing the state of the world. We present initial experiments enabled by the platform around emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, multi-agent interactions, models that learn like a child, and attention studies in humans and neural networks. The simulation platform will be made publicly available.
We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers that are embedded in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular, each consumers usage level depends directly on the usage of her neighbors in the social network structure. Thus, the monopolists optimal pricing strategy may involve offering discounts to certain agents, who have a central position in the underlying network. First, we consider a setting where the monopolist can offer individualized prices and derive an explicit characterization of the optimal price for each consumer as a function of her network position. In particular, we show that it is optimal for the monopolist to charge each agent a price that is proportional to her Bonacich centrality in the social network. In the second part of the paper, we discuss the optimal strategy of a monopolist that can only choose a single uniform price for the good and derive an algorithm polynomial in the number of agents to compute such a price. Thirdly, we assume that the monopolist can offer the good in two prices, full and discounted, and study the problem of determining which set of consumers should be given the discount. We show that the problem is NP-hard, however we provide an explicit characterization of the set of agents that should be offered the discounted price. Next, we describe an approximation algorithm for finding the optimal set of agents. We show that if the profit is nonnegative under any feasible price allocation, the algorithm guarantees at least 88% of the optimal profit. Finally, we highlight the value of network information by comparing the profits of a monopolist that does not take into account the network effects when choosing her pricing policy to those of a monopolist that uses this information optimally.
Targeted attacks against network infrastructure are notoriously difficult to guard against. In the case of communication networks, such attacks can leave users vulnerable to censorship and surveillance, even when cryptography is used. Much of the existing work on network fault-tolerance focuses on random faults and does not apply to adversarial faults (attacks). Centralized networks have single points of failure by definition, leading to a growing popularity in decentralized architectures and protocols for greater fault-tolerance. However, centralized network structure can arise even when protocols are decentralized. Despite their decentralized protocols, the Internet and World-Wide Web have been shown both theoretically and historically to be highly susceptible to attack, in part due to emergent structural centralization. When single points of failure exist, they are potentially vulnerable to non-technological (i.e., coercive) attacks, suggesting the importance of a structural approach to attack-tolerance. We show how the assumption of partial trust transitivity, while more realistic than the assumption underlying webs of trust, can be used to quantify the effective redundancy of a network as a function of trust transitivity. We also prove that the effective redundancy of the wrap-around butterfly topology increases exponentially with trust transitivity and describe a novel concurrent multipath routing algorithm for constructing paths to utilize that redundancy. When portions of network structure can be dictated our results can be used to create scalable, attack-tolerant infrastructures. More generally, our results provide a theoretical formalism for evaluating the effects of network structure on adversarial fault-tolerance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا