Do you want to publish a course? Click here

From Altruism to Non-Cooperation in Routing Games

125   0   0.0 ( 0 )
 Added by Amar Prakash Azad
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

The paper studies the routing in the network shared by several users. Each user seeks to optimize either its own performance or some combination between its own performance and that of other users, by controlling the routing of its given flow demand. We parameterize the degree of cooperation which allows to cover the fully non-cooperative behavior, the fully cooperative behavior, and even more, the fully altruistic behavior, all these as special cases of the parameters choice. A large part of the work consists in exploring the impact of the degree of cooperation on the equilibrium. Our first finding is to identify multiple Nash equilibria with cooperative behavior that do not occur in the non-cooperative case under the same conditions (cost, demand and topology). We then identify Braess like paradox (in which adding capacity or adding a link to a network results in worse performance to all users) and study the impact of the degree of cooperation on it. We identify another type of paradox in cooperation scenario. We identify that when we increase the degree of cooperation of a user while other users keep unchanged their degree of cooperation, leads to an improvement in performance of that user. We then pursue the exploration and carry it on to the setting of Mixed equilibrium (i.e. some users are non atomic-they have infinitesimally small demand, and other have finite fixed demand). We finally obtain some theoretical results that show that for low degree of cooperation the equilibrium is unique, confirming the results of our numerical study.



rate research

Read More

Interactions among selfish users sharing a common transmission channel can be modeled as a non-cooperative game using the game theory framework. When selfish users choose their transmission probabilities independently without any coordination mechanism, Nash equilibria usually result in a network collapse. We propose a methodology that transforms the non-cooperative game into a Stackelberg game. Stackelberg equilibria of the Stackelberg game can overcome the deficiency of the Nash equilibria of the original game. A particular type of Stackelberg intervention is constructed to show that any positive payoff profile feasible with independent transmission probabilities can be achieved as a Stackelberg equilibrium payoff profile. We discuss criteria to select an operating point of the network and informational requirements for the Stackelberg game. We relax the requirements and examine the effects of relaxation on performance.
The increasing rate of urbanization has added pressure on the already constrained transportation networks in our communities. Ride-sharing platforms such as Uber and Lyft are becoming a more commonplace, particularly in urban environments. While such services may be deemed more convenient than riding public transit due to their on-demand nature, reports show that they do not necessarily decrease the congestion in major cities. One of the key problems is that typically mobility decision support systems focus on individual utility and react only after congestion appears. In this paper, we propose socially considerate multi-modal routing algorithms that are proactive and consider, via predictions, the shared effect of riders on the overall efficacy of mobility services. We have adapted the MATSim simulator framework to incorporate the proposed algorithms present a simulation analysis of a case study in Nashville, Tennessee that assesses the effects of our routing models on the traffic congestion for different levels of penetration and adoption of socially considerate routes. Our results indicate that even at a low penetration (social ratio), we are able to achieve an improvement in system-level performance.
The price of anarchy has become a standard measure of the efficiency of equilibria in games. Most of the literature in this area has focused on establishing worst-case bounds for specific classes of games, such as routing games or more general congestion games. Recently, the price of anarchy in routing games has been studied as a function of the traffic demand, providing asymptotic results in light and heavy traffic. The aim of this paper is to study the price of anarchy in nonatomic routing games in the intermediate region of the demand. To achieve this goal, we begin by establishing some smoothness properties of Wardrop equilibria and social optima for general smooth costs. In the case of affine costs we show that the equilibrium is piecewise linear, with break points at the demand levels at which the set of active paths changes. We prove that the number of such break points is finite, although it can be exponential in the size of the network. Exploiting a scaling law between the equilibrium and the social optimum, we derive a similar behavior for the optimal flows. We then prove that in any interval between break points the price of anarchy is smooth and it is either monotone (decreasing or increasing) over the full interval, or it decreases up to a certain minimum point in the interior of the interval and increases afterwards. We deduce that for affine costs the maximum of the price of anarchy can only occur at the break points. For general costs we provide counterexamples showing that the set of break points is not always finite.
Recommendation systems are extremely popular tools for matching users and contents. However, when content providers are strategic, the basic principle of matching users to the closest content, where both users and contents are modeled as points in some semantic space, may yield low social welfare. This is due to the fact that content providers are strategic and optimize their offered content to be recommended to as many users as possible. Motivated by modern applications, we propose the widely studied framework of facility location games to study recommendation systems with strategic content providers. Our conceptual contribution is the introduction of a $textit{mediator}$ to facility location models, in the pursuit of better social welfare. We aim at designing mediators that a) induce a game with high social welfare in equilibrium, and b) intervene as little as possible. In service of the latter, we introduce the notion of $textit{intervention cost}$, which quantifies how much damage a mediator may cause to the social welfare when an off-equilibrium profile is adopted. As a case study in high-welfare low-intervention mediator design, we consider the one-dimensional segment as the user domain. We propose a mediator that implements the socially optimal strategy profile as the unique equilibrium profile, and show a tight bound on its intervention cost. Ultimately, we consider some extensions, and highlight open questions for the general agenda.
We consider a discrete-time nonatomic routing game with variable demand and uncertain costs. Given a routing network with single origin and destination, the cost function of each edge depends on some uncertain persistent state parameter. At every period, a random traffc demand is routed through the network according to a Bayes-Wardrop equilibrium. The realized costs are publicly observed and the Bayesian belief about the state parameter is updated. We say that there is strong learning when beliefs converge to the truth and weak learning when the equilibrium flow converges to the complete-information flow. We characterize the networks for which learning occurs. We prove that these networks have a series-parallel structure and provide a counterexample to prove that the condition is necessary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا