Do you want to publish a course? Click here

A Stackelberg Game Approach Towards Socially-Aware Incentive Mechanisms for Mobile Crowdsensing (Online report)

89   0   0.0 ( 0 )
 Added by Jiangtian Nie
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward. In this paper, to effectively and efficiently recruit sufficient number of mobile users, i.e., participants, we investigate an optimal incentive mechanism of a crowdsensing service provider. We apply a two-stage Stackelberg game to analyze the participation level of the mobile users and the optimal incentive mechanism of the crowdsensing service provider using backward induction. In order to motivate the participants, the incentive is designed by taking into account the social network effects from the underlying mobile social domain. For example, in a crowdsensing-based road traffic information sharing application, a user can get a better and accurate traffic report if more users join and share their road information. We derive the analytical expressions for the discriminatory incentive as well as the uniform incentive mechanisms. To fit into practical scenarios, we further formulate a Bayesian Stackelberg game with incomplete information to analyze the interaction between the crowdsensing service provider and mobile users, where the social structure information (the social network effects) is uncertain. The existence and uniqueness of the Bayesian Stackelberg equilibrium are validated by identifying the best response strategies of the mobile users. Numerical results corroborate the fact that the network effects tremendously stimulate higher mobile participation level and greater revenue of the crowdsensing service provider. In addition, the social structure information helps the crowdsensing service provider to achieve greater revenue gain.



rate research

Read More

Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, in order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs participation level and the CSPs optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.
159 - Jiajun Sun 2014
Mobile crowdsensing (MCS) has been intensively explored recently due to its flexible and pervasive sensing ability. Although many incentive mechanisms have been built to attract extensive user participation, Most of these mechanisms focus only on independent task scenarios, where the sensing tasks are independent of each other. On the contrary, we focus on a periodical task scenario, where each user participates in the same type of sensing tasks periodically. In this paper, we consider the long-term user participation incentive in a general periodical MCS system from a frugality payment perspective. We explore the issue under both semi-online (the intra-period interactive process is synchronous while the inter-period interactive process is sequential and asynchronous during each period) and online user arrival models (the previous two interactive processes are sequential and asynchronous). In particular, we first propose a semi-online frugal incentive mechanism by introducing a Lyapunov method. Moreover, we also extend it to an online frugal incentive mechanism, which satisfies the constant frugality. Besides, the two mechanisms can also satisfy computational efficiency, asymptotical optimality, individual rationality and truthfulness. Through extensive simulations, we evaluate the performance and validate the theoretical properties of our online mechanisms.
Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially observe the features, and aims to classify individuals with respect to a quality score. The goal is to design an evaluation mechanism that maximizes the overall quality score, i.e., welfare, in the population, taking any strategic updating into account. We further study the algorithmic aspect of finding the welfare maximizing evaluation mechanism under two specific settings in our model. When scores are linear and mechanisms use linear scoring rules on the observable features, we show that the optimal evaluation mechanism is an appropriate projection of the quality score. When mechanisms must use linear thresholds, we design a polynomial time algorithm with a (1/4)-approximation guarantee when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
The increasing rate of urbanization has added pressure on the already constrained transportation networks in our communities. Ride-sharing platforms such as Uber and Lyft are becoming a more commonplace, particularly in urban environments. While such services may be deemed more convenient than riding public transit due to their on-demand nature, reports show that they do not necessarily decrease the congestion in major cities. One of the key problems is that typically mobility decision support systems focus on individual utility and react only after congestion appears. In this paper, we propose socially considerate multi-modal routing algorithms that are proactive and consider, via predictions, the shared effect of riders on the overall efficacy of mobility services. We have adapted the MATSim simulator framework to incorporate the proposed algorithms present a simulation analysis of a case study in Nashville, Tennessee that assesses the effects of our routing models on the traffic congestion for different levels of penetration and adoption of socially considerate routes. Our results indicate that even at a low penetration (social ratio), we are able to achieve an improvement in system-level performance.
227 - Jiajun Sun 2013
Crowd sensing is a new paradigm which leverages the ubiquity of sensor-equipped mobile devices to collect data. To achieve good quality for crowd sensing, incentive mechanisms are indispensable to attract more participants. Most of existing mechanisms focus on the expected utility prior to sensing, ignoring the risk of low quality solution and privacy leakage. Traditional incentive mechanisms such as the Vickrey-Clarke-Groves (VCG) mechanism and its variants are not applicable here. In this paper, to address these challenges, we propose a behavior based incentive mechanism for crowd sensing applications with budget constraints by applying sequential all-pay auctions in mobile social networks (MSNs), not only to consider the effects of extensive user participation, but also to maximize high quality of the context based sensing content submission for crowd sensing platform under the budget constraints, where users arrive in a sequential order. Through an extensive simulation, results indicate that incentive mechanisms in our proposed framework outperform the best existing solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا