Do you want to publish a course? Click here

Automatic Speech Recognition and Topic Identification for Almost-Zero-Resource Languages

78   0   0.0 ( 0 )
 Added by Chunxi Liu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Automatic speech recognition (ASR) systems often need to be developed for extremely low-resource languages to serve end-uses such as audio content categorization and search. While universal phone recognition is natural to consider when no transcribed speech is available to train an ASR system in a language, adapting universal phone models using very small amounts (minutes rather than hours) of transcribed speech also needs to be studied, particularly with state-of-the-art DNN-based acoustic models. The DARPA LORELEI program provides a framework for such very-low-resource ASR studies, and provides an extrinsic metric for evaluating ASR performance in a humanitarian assistance, disaster relief setting. This paper presents our Kaldi-based systems for the program, which employ a universal phone modeling approach to ASR, and describes recipes for very rapid adaptation of this universal ASR system. The results we obtain significantly outperform results obtained by many competing approaches on the NIST LoReHLT 2017 Evaluation datasets.



rate research

Read More

In topic identification (topic ID) on real-world unstructured audio, an audio instance of variable topic shifts is first broken into sequential segments, and each segment is independently classified. We first present a general purpose method for topic ID on spoken segments in low-resource languages, using a cascade of universal acoustic modeling, translation lexicons to English, and English-language topic classification. Next, instead of classifying each segment independently, we demonstrate that exploring the contextual dependencies across sequential segments can provide large improvements. In particular, we propose an attention-based contextual model which is able to leverage the contexts in a selective manner. We test both our contextual and non-contextual models on four LORELEI languages, and on all but one our attention-based contextual model significantly outperforms the context-independent models.
99 - Linghui Meng , Jin Xu , Xu Tan 2021
In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spectrograms or MFCC) as the input, and recognizing both text sequences, where the two recognition losses use the same combination weight. We apply MixSpeech on two popular end-to-end speech recognition models including LAS (Listen, Attend and Spell) and Transformer, and conduct experiments on several low-resource datasets including TIMIT, WSJ, and HKUST. Experimental results show that MixSpeech achieves better accuracy than the baseline models without data augmentation, and outperforms a strong data augmentation method SpecAugment on these recognition tasks. Specifically, MixSpeech outperforms SpecAugment with a relative PER improvement of 10.6$%$ on TIMIT dataset, and achieves a strong WER of 4.7$%$ on WSJ dataset.
There are several domains that own corresponding widely used feature extractors, such as ResNet, BERT, and GPT-x. These models are usually pre-trained on large amounts of unlabeled data by self-supervision and can be effectively applied to downstream tasks. In the speech domain, wav2vec2.0 starts to show its powerful representation ability and feasibility of ultra-low resource speech recognition on the Librispeech corpus, which belongs to the audiobook domain. However, wav2vec2.0 has not been examined on real spoken scenarios and languages other than English. To verify its universality over languages, we apply pre-trained models to solve low-resource speech recognition tasks in various spoken languages. We achieve more than 20% relative improvements in six languages compared with previous work. Among these languages, English achieves a gain of 52.4%. Moreover, using coarse-grained modeling units, such as subword or character, achieves better results than fine-grained modeling units, such as phone or letter.
Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limited conditions, the manually transcribed speech required to develop standard ASR systems can be severely limited or unavailable. In this paper, we investigate alternative unsupervised solutions to obtaining tokenizations of speech in terms of a vocabulary of automatically discovered word-like or phoneme-like units, without depending on the supervised training of ASR systems. Moreover, using automatic phoneme-like tokenizations, we demonstrate that a convolutional neural network based framework for learning spoken document representations provides competitive performance compared to a standard bag-of-words representation, as evidenced by comprehensive topic ID evaluations on both single-label and multi-label classification tasks.
95 - Kai Fan , Jiayi Wang , Bo Li 2019
The performances of automatic speech recognition (ASR) systems are usually evaluated by the metric word error rate (WER) when the manually transcribed data are provided, which are, however, expensively available in the real scenario. In addition, the empirical distribution of WER for most ASR systems usually tends to put a significant mass near zero, making it difficult to simulate with a single continuous distribution. In order to address the two issues of ASR quality estimation (QE), we propose a novel neural zero-inflated model to predict the WER of the ASR result without transcripts. We design a neural zero-inflated beta regression on top of a bidirectional transformer language model conditional on speech features (speech-BERT). We adopt the pre-training strategy of token level mask language modeling for speech-BERT as well, and further fine-tune with our zero-inflated layer for the mixture of discrete and continuous outputs. The experimental results show that our approach achieves better performance on WER prediction in the metrics of Pearson and MAE, compared with most existed quality estimation algorithms for ASR or machine translation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا