Do you want to publish a course? Click here

MixSpeech: Data Augmentation for Low-resource Automatic Speech Recognition

100   0   0.0 ( 0 )
 Added by Linghui Meng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spectrograms or MFCC) as the input, and recognizing both text sequences, where the two recognition losses use the same combination weight. We apply MixSpeech on two popular end-to-end speech recognition models including LAS (Listen, Attend and Spell) and Transformer, and conduct experiments on several low-resource datasets including TIMIT, WSJ, and HKUST. Experimental results show that MixSpeech achieves better accuracy than the baseline models without data augmentation, and outperforms a strong data augmentation method SpecAugment on these recognition tasks. Specifically, MixSpeech outperforms SpecAugment with a relative PER improvement of 10.6$%$ on TIMIT dataset, and achieves a strong WER of 4.7$%$ on WSJ dataset.



rate research

Read More

398 - Yubei Xiao , Ke Gong , Pan Zhou 2020
Low-resource automatic speech recognition (ASR) is challenging, as the low-resource target language data cannot well train an ASR model. To solve this issue, meta-learning formulates ASR for each source language into many small ASR tasks and meta-learns a model initialization on all tasks from different source languages to access fast adaptation on unseen target languages. However, for different source languages, the quantity and difficulty vary greatly because of their different data scales and diverse phonological systems, which leads to task-quantity and task-difficulty imbalance issues and thus a failure of multilingual meta-learning ASR (MML-ASR). In this work, we solve this problem by developing a novel adversarial meta sampling (AMS) approach to improve MML-ASR. When sampling tasks in MML-ASR, AMS adaptively determines the task sampling probability for each source language. Specifically, for each source language, if the query loss is large, it means that its tasks are not well sampled to train ASR model in terms of its quantity and difficulty and thus should be sampled more frequently for extra learning. Inspired by this fact, we feed the historical task query loss of all source language domain into a network to learn a task sampling policy for adversarially increasing the current query loss of MML-ASR. Thus, the learnt task sampling policy can master the learning situation of each language and thus predicts good task sampling probability for each language for more effective learning. Finally, experiment results on two multilingual datasets show significant performance improvement when applying our AMS on MML-ASR, and also demonstrate the applicability of AMS to other low-resource speech tasks and transfer learning ASR approaches.
101 - Wenxin Hou , Han Zhu , Yidong Wang 2021
Cross-lingual speech adaptation aims to solve the problem of leveraging multiple rich-resource languages to build models for a low-resource target language. Since the low-resource language has limited training data, speech recognition models can easily overfit. In this paper, we propose to use adapters to investigate the performance of multiple adapters for parameter-efficient cross-lingual speech adaptation. Based on our previous MetaAdapter that implicitly leverages adapters, we propose a novel algorithms called SimAdapter for explicitly learning knowledge from adapters. Our algorithm leverages adapters which can be easily integrated into the Transformer structure.MetaAdapter leverages meta-learning to transfer the general knowledge from training data to the test language. SimAdapter aims to learn the similarities between the source and target languages during fine-tuning using the adapters. We conduct extensive experiments on five-low-resource languages in Common Voice dataset. Results demonstrate that our MetaAdapter and SimAdapter methods can reduce WER by 2.98% and 2.55% with only 2.5% and 15.5% of trainable parameters compared to the strong full-model fine-tuning baseline. Moreover, we also show that these two novel algorithms can be integrated for better performance with up to 3.55% relative WER reduction.
Techniques for multi-lingual and cross-lingual speech recognition can help in low resource scenarios, to bootstrap systems and enable analysis of new languages and domains. End-to-end approaches, in particular sequence-based techniques, are attractive because of their simplicity and elegance. While it is possible to integrate traditional multi-lingual bottleneck feature extractors as front-ends, we show that end-to-end multi-lingual training of sequence models is effective on context independent models trained using Connectionist Temporal Classification (CTC) loss. We show that our model improves performance on Babel languages by over 6% absolute in terms of word/phoneme error rate when compared to mono-lingual systems built in the same setting for these languages. We also show that the trained model can be adapted cross-lingually to an unseen language using just 25% of the target data. We show that training on multiple languages is important for very low resource cross-lingual target scenarios, but not for multi-lingual testing scenarios. Here, it appears beneficial to include large well prepared datasets.
Varying data augmentation policies and regularization over the course of optimization has led to performance improvements over using fixed values. We show that population based training is a useful tool to continuously search those hyperparameters, within a fixed budget. This greatly simplifies the experimental burden and computational cost of finding such optimal schedules. We experiment in speech recognition by optimizing SpecAugment this way, as well as dropout. It compares favorably to a baseline that does not change those hyperparameters over the course of training, with an 8% relative WER improvement. We obtain 5.18% word error rate on LibriSpeechs test-other.
While low resource speech recognition has attracted a lot of attention from the speech community, there are a few tools available to facilitate low resource speech collection. In this work, we present SANTLR: Speech Annotation Toolkit for Low Resource Languages. It is a web-based toolkit which allows researchers to easily collect and annotate a corpus of speech in a low resource language. Annotators may use this toolkit for two purposes: transcription or recording. In transcription, annotators would transcribe audio files provided by the researchers; in recording, annotators would record their voice by reading provided texts. We highlight two properties of this toolkit. First, SANTLR has a very user-friendly User Interface (UI). Both researchers and annotators may use this simple web interface to interact. There is no requirement for the annotators to have any expertise in audio or text processing. The toolkit would handle all preprocessing and postprocessing steps. Second, we employ a multi-step ranking mechanism facilitate the annotation process. In particular, the toolkit would give higher priority to utterances which are easier to annotate and are more beneficial to achieving the goal of the annotation, e.g. quickly training an acoustic model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا