No Arabic abstract
Concept lattices are well-known conceptual structures that organise interesting patterns-the concepts-extracted from data. In some applications, such as software engineering or data mining, the size of the lattice can be a problem, as it is often too large to be efficiently computed, and too complex to be browsed. For this reason, the Galois Sub-Hierarchy, a restriction of the concept lattice to introducer concepts, has been introduced as a smaller alternative. In this paper, we generalise the Galois Sub-Hierarchy to n-lattices, conceptual structures obtained from multidimensional data in the same way that concept lattices are obtained from binary relations.
This paper investigates the impact of query topology on the difficulty of answering conjunctive queries in the presence of OWL 2 QL ontologies. Our first contribution is to clarify the worst-case size of positive existential (PE), non-recursive Datalog (NDL), and first-order (FO) rewritings for various classes of tree-like conjunctive queries, ranging from linear queries to bounded treewidth queries. Perhaps our most surprising result is a superpolynomial lower bound on the size of PE-rewritings that holds already for linear queries and ontologies of depth 2. More positively, we show that polynomial-size NDL-rewritings always exist for tree-shaped queries with a bounded number of leaves (and arbitrary ontologies), and for bounded treewidth queries paired with bounded depth ontologies. For FO-rewritings, we equate the existence of polysize rewritings with well-known problems in Boolean circuit complexity. As our second contribution, we analyze the computational complexity of query answering and establish tractability results (either NL- or LOGCFL-completeness) for a range of query-ontology pairs. Combining our new results with those from the literature yields a complete picture of the succinctness and complexity landscapes for the considered classes of queries and ontologies.
Implicational bases are objects of interest in formal concept analysis and its applications. Unfortunately, even the smallest base, the Duquenne-Guigues base, has an exponential size in the worst case. In this paper, we use results on the average number of minimal transversals in random hypergraphs to show that the base of proper premises is, on average, of quasi-polynomial size.
We study the question of how concepts that have structure get represented in the brain. Specifically, we introduce a model for hierarchically structured concepts and we show how a biologically plausible neural network can recognize these concepts, and how it can learn them in the first place. Our main goal is to introduce a general framework for these tasks and prove formally how both (recognition and learning) can be achieved. We show that both tasks can be accomplished even in presence of noise. For learning, we analyze Ojas rule formally, a well-known biologically-plausible rule for adjusting the weights of synapses. We complement the learning results with lower bounds asserting that, in order to recognize concepts of a certain hierarchical depth, neural networks must have a corresponding number of layers.
The notion of concept has been studied for centuries, by philosophers, linguists, cognitive scientists, and researchers in artificial intelligence (Margolis & Laurence, 1999). There is a large literature on formal, mathematical models of concepts, including a whole sub-field of AI -- Formal Concept Analysis -- devoted to this topic (Ganter & Obiedkov, 2016). Recently, researchers in machine learning have begun to investigate how methods from representation learning can be used to induce concepts from raw perceptual data (Higgins, Sonnerat, et al., 2018). The goal of this report is to provide a formal account of concepts which is compatible with this latest work in deep learning. The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces. The mathematics of partial orders and lattices is a standard tool for modelling conceptual spaces (Ch.2, Mitchell (1997), Ganter and Obiedkov (2016)); however, there is no formal work that we are aware of which defines a conceptual lattice on top of a representation that is induced using unsupervised deep learning (Goodfellow et al., 2016). The advantages of partially-ordered lattice structures are that these provide natural mechanisms for use in concept discovery algorithms, through the meets and joins of the lattice.
We propose Dr.Aid, a logic-based AI framework for automated compliance checking of data governance rules over data-flow graphs. The rules are modelled using a formal language based on situation calculus and are suitable for decentralized contexts with multi-input-multi-output (MIMO) processes. Dr.Aid models data rules and flow rules and checks compliance by reasoning about the propagation, combination, modification and application of data rules over the data flow graphs. Our approach is driven and evaluated by real-world datasets using provenance graphs from data-intensive research.