Do you want to publish a course? Click here

Average Size of Implicational Bases

57   0   0.0 ( 0 )
 Added by Giacomo Kahn
 Publication date 2018
and research's language is English
 Authors Giacomo Kahn




Ask ChatGPT about the research

Implicational bases are objects of interest in formal concept analysis and its applications. Unfortunately, even the smallest base, the Duquenne-Guigues base, has an exponential size in the worst case. In this paper, we use results on the average number of minimal transversals in random hypergraphs to show that the base of proper premises is, on average, of quasi-polynomial size.



rate research

Read More

This paper investigates the impact of query topology on the difficulty of answering conjunctive queries in the presence of OWL 2 QL ontologies. Our first contribution is to clarify the worst-case size of positive existential (PE), non-recursive Datalog (NDL), and first-order (FO) rewritings for various classes of tree-like conjunctive queries, ranging from linear queries to bounded treewidth queries. Perhaps our most surprising result is a superpolynomial lower bound on the size of PE-rewritings that holds already for linear queries and ontologies of depth 2. More positively, we show that polynomial-size NDL-rewritings always exist for tree-shaped queries with a bounded number of leaves (and arbitrary ontologies), and for bounded treewidth queries paired with bounded depth ontologies. For FO-rewritings, we equate the existence of polysize rewritings with well-known problems in Boolean circuit complexity. As our second contribution, we analyze the computational complexity of query answering and establish tractability results (either NL- or LOGCFL-completeness) for a range of query-ontology pairs. Combining our new results with those from the literature yields a complete picture of the succinctness and complexity landscapes for the considered classes of queries and ontologies.
102 - Giacomo Kahn 2018
Concept lattices are well-known conceptual structures that organise interesting patterns-the concepts-extracted from data. In some applications, such as software engineering or data mining, the size of the lattice can be a problem, as it is often too large to be efficiently computed, and too complex to be browsed. For this reason, the Galois Sub-Hierarchy, a restriction of the concept lattice to introducer concepts, has been introduced as a smaller alternative. In this paper, we generalise the Galois Sub-Hierarchy to n-lattices, conceptual structures obtained from multidimensional data in the same way that concept lattices are obtained from binary relations.
We consider the Graver basis, the universal Groebner basis, a Markov basis and the set of the circuits of a toric ideal. Let $A, B$ be any two of these bases such that $A ot subset B$, we prove that there is no polynomial on the size or on the maximal degree of the elements of $B$ which bounds the size or the maximal degree of the elements of $A$ correspondingly.
In this paper, we consider the average size of independent edge sets, also called matchings, in a graph. We characterize the extremal graphs for the average size of matchings in general graphs and trees. In addition, we obtain inequalities between the average size of matchings and the number of matchings as well as the matching energy, which is defined as the sum of the absolute values of the zeros of the matching polynomial.
Knowledge bases (KBs) are not static entities: new information constantly appears and some of the previous knowledge becomes obsolete. In order to reflect this evolution of knowledge, KBs should be expanded with the new knowledge and contracted from the obsolete one. This problem is well-studied for propositional but much less for first-order KBs. In this work we investigate knowledge expansion and contraction for KBs expressed in DL-Lite, a family of description logics (DLs) that underlie the tractable fragment OWL 2 QL of the Web Ontology Language OWL 2. We start with a novel knowledge evolution framework and natural postulates that evolution should respect, and compare our postulates to the well-established AGM postulates. We then review well-known model and formula-based approaches for expansion and contraction for propositional theories and show how they can be adapted to the case of DL-Lite. In particular, we show intrinsic limitations of model-based approaches: besides the fact that some of them do not respect the postulates we have established, they ignore the structural properties of KBs. This leads to undesired properties of evolution results: evolution of DL-Lite KBs cannot be captured in DL-Lite. Moreover, we show that well-known formula-based approaches are also not appropriate for DL-Lite expansion and contraction: they either have a high complexity of computation, or they produce logical theories that cannot be expressed in DL-Lite. Thus, we propose a novel formula-based approach that respects our principles and for which evolution is expressible in DL-Lite. For this approach we also propose polynomial time deterministic algorithms to compute evolution of DL-Lite KBs when evolution affects only factual data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا