Do you want to publish a course? Click here

Learning Hierarchically Structured Concepts

225   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study the question of how concepts that have structure get represented in the brain. Specifically, we introduce a model for hierarchically structured concepts and we show how a biologically plausible neural network can recognize these concepts, and how it can learn them in the first place. Our main goal is to introduce a general framework for these tasks and prove formally how both (recognition and learning) can be achieved. We show that both tasks can be accomplished even in presence of noise. For learning, we analyze Ojas rule formally, a well-known biologically-plausible rule for adjusting the weights of synapses. We complement the learning results with lower bounds asserting that, in order to recognize concepts of a certain hierarchical depth, neural networks must have a corresponding number of layers.



rate research

Read More

Humans are highly efficient learners, with the ability to grasp the meaning of a new concept from just a few examples. Unlike popular computer vision systems, humans can flexibly leverage the compositional structure of the visual world, understanding new concepts as combinations of existing concepts. In the current paper, we study how people learn different types of visual compositions, using abstract visual forms with rich relational structure. We find that people can make meaningful compositional generalizations from just a few examples in a variety of scenarios, and we develop a Bayesian program induction model that provides a close fit to the behavioral data. Unlike past work examining special cases of compositionality, our work shows how a single computational approach can account for many distinct types of compositional generalization.
We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a sequence of images is divided across a two-level hierarchical decoder. The high-level decoder constructs a plan by generating a semantic concept (i.e., topic) for each image in sequence. The low-level decoder generates a sentence for each image using a semantic compositional network, which effectively grounds the sentence generation conditioned on the topic. The two decoders are jointly trained end-to-end using reinforcement learning. We evaluate our model on the visual storytelling (VIST) dataset. Empirical results from both automatic and human evaluations demonstrate that the proposed hierarchically structured reinforced training achieves significantly better performance compared to a strong flat deep reinforcement learning baseline.
We consider the setting of an agent with a fixed body interacting with an unknown and uncertain external world. We show that models trained to predict proprioceptive information about the agents body come to represent objects in the external world. In spite of being trained with only internally available signals, these dynamic body models come to represent external objects through the necessity of predicting their effects on the agents own body. That is, the model learns holistic persistent representations of objects in the world, even though the only training signals are body signals. Our dynamics model is able to successfully predict distributions over 132 sensor readings over 100 steps into the future and we demonstrate that even when the body is no longer in contact with an object, the latent variables of the dynamics model continue to represent its shape. We show that active data collection by maximizing the entropy of predictions about the body---touch sensors, proprioception and vestibular information---leads to learning of dynamic models that show superior performance when used for control. We also collect data from a real robotic hand and show that the same models can be used to answer questions about properties of objects in the real world. Videos with qualitative results of our models are available at https://goo.gl/mZuqAV.
In this paper we propose a new multiple criteria decision aiding method to deal with sorting problems in which alternatives are evaluated on criteria structured in a hierarchical way and presenting interactions. The underlying preference model of the proposed method is the Choquet integral, while the hierarchical structure of the criteria is taken into account by applying the Multiple Criteria Hierarchy Process. Considering the Choquet integral based on a 2-additive capacity, the paper presents a procedure to find all the minimal sets of pairs of interacting criteria representing the preference information provided by the Decision Maker (DM). Robustness concerns are also taken into account by applying the Robust Ordinal Regression and the Stochastic Multicriteria Acceptability Analysis. Even if in different ways, both of them provide recommendations on the hierarchical sorting problem at hand by exploring the whole set of capacities compatible with the preferences provided by the DM avoiding to take into account only one of them. The applicability of the considered method to real world problems is demonstrated by means of an example regarding rating of European Countries by considering economic and financial data provided by Standard & Poors Global Inc.
Evolution has resulted in highly developed abilities in many natural intelligences to quickly and accurately predict mechanical phenomena. Humans have successfully developed laws of physics to abstract and model such mechanical phenomena. In the context of artificial intelligence, a recent line of work has focused on estimating physical parameters based on sensory data and use them in physical simulators to make long-term predictions. In contrast, we investigate the effectiveness of a single neural network for end-to-end long-term prediction of mechanical phenomena. Based on extensive evaluation, we demonstrate that such networks can outperform alternate approaches having even access to ground-truth physical simulators, especially when some physical parameters are unobserved or not known a-priori. Further, our network outputs a distribution of outcomes to capture the inherent uncertainty in the data. Our approach demonstrates for the first time the possibility of making actionable long-term predictions from sensor data without requiring to explicitly model the underlying physical laws.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا