No Arabic abstract
Finite blocklength and second-order (dispersion) results are presented for the arbitrarily-varying channel (AVC), a classical model wherein an adversary can transmit arbitrary signals into the channel. A novel finite blocklength achievability bound is presented, roughly analogous to the random coding union bound for non-adversarial channels. This finite blocklength bound, along with a known converse bound, is used to derive bounds on the dispersion of discrete memoryless AVCs without shared randomness, and with cost constraints on the input and the state. These bounds are tight for many channels of interest, including the binary symmetric AVC. However, the bounds are not tight if the deterministic and random code capacities differ.
We consider upper bounds on the error probability in channel coding. We derive an improved maximum-likelihood union bound, which takes into account events where the likelihood of the correct codeword is tied with that of some competitors. We compare this bound to various previous results, both qualitatively and quantitatively. With respect to maximal error probability of linear codes, we observe that when the channel is additive, the derivation of bounds, as well as the assumptions on the admissible encoder and decoder, simplify considerably.
We analyze a wireless communication system with finite block length and finite battery energy, under quasi-static Nakagami-m fading. Wireless energy transfer is carried out in the downlink while information transfer occurs in the uplink. Transmission strategies for scenarios with/without energy accumulation between transmission rounds are characterized in terms of error probability and energy consumption. A power control protocol for the energy accumulation scenario is proposed and results show the enormous impact on improving the system performance, in terms of error probability and energy consumption. The numerical results corroborate the existence and uniqueness of an optimum target error probability, while showing that a relatively small battery could be a limiting factor for some setups, specially when using the energy accumulation strategy.
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitters rate matches the MolavianJazi-Laneman bound (2015) in its first- and second-order terms, improving the remaining terms to $frac12frac{log n}{n}+O left(frac 1 n right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of $K$ possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time $n_t$ that depends on the decoders estimate $t$ of the number of active transmitters $k$. Single-bit feedback from the decoder to all encoders at each potential decoding time $n_i$, $i leq t$, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.
This paper analyzes the effective capacity of delay constrained machine type communication (MTC) networks operating in the finite blocklength regime. First, we derive a closed-form mathematical approximation for the effective capacity in quasi-static Rayleigh fading channels. We characterize the optimum error probability to maximize the concave effective capacity function with reliability constraint and study the effect of signal-to-interference-plus-noise ratio (SINR) variations for different delay constraints. The trade off between reliability and effective capacity maximization reveals that we can achieve higher reliability with limited sacrifice in effective capacity specially when the number of machines is small. Our analysis reveals that SINR variations have less impact on effective capacity for strict delay constrained networks. We present an exemplary scenario for massive MTC access to analyze the interference effect proposing three methods to restore the effective capacity for a certain node which are power control, graceful degradation of delay constraint and joint compensation. Joint compensation combines both power control and graceful degradation of delay constraint, where we perform maximization of an objective function whose parameters are determined according to delay and SINR priorities. Our results show that networks with stringent delay constraints favor power controlled compensation and compensation is generally performed at higher costs for shorter packets.
This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional designs needs the assumption of infinite blocklength and thus is no longer appropriate. We adopt the newly finite blocklength coding capacity formula for explicitly specifying the trade-off between reliability and code blocklength. However, conventional successive interference cancellation (SIC) may become infeasible due to heterogeneous blocklengths. We thus consider several scenarios with different channel conditions and with/without SIC. By carefully examining the problem structure, we present in closed-form the optimal power and code blocklength for energy-efficient transmissions. Simulation results provide interesting insights into conditions for which non-orthogonal transmission is more energy efficient than the orthogonal transmission such as TDMA.