No Arabic abstract
We consider upper bounds on the error probability in channel coding. We derive an improved maximum-likelihood union bound, which takes into account events where the likelihood of the correct codeword is tied with that of some competitors. We compare this bound to various previous results, both qualitatively and quantitatively. With respect to maximal error probability of linear codes, we observe that when the channel is additive, the derivation of bounds, as well as the assumptions on the admissible encoder and decoder, simplify considerably.
Finite blocklength and second-order (dispersion) results are presented for the arbitrarily-varying channel (AVC), a classical model wherein an adversary can transmit arbitrary signals into the channel. A novel finite blocklength achievability bound is presented, roughly analogous to the random coding union bound for non-adversarial channels. This finite blocklength bound, along with a known converse bound, is used to derive bounds on the dispersion of discrete memoryless AVCs without shared randomness, and with cost constraints on the input and the state. These bounds are tight for many channels of interest, including the binary symmetric AVC. However, the bounds are not tight if the deterministic and random code capacities differ.
We analyze a wireless communication system with finite block length and finite battery energy, under quasi-static Nakagami-m fading. Wireless energy transfer is carried out in the downlink while information transfer occurs in the uplink. Transmission strategies for scenarios with/without energy accumulation between transmission rounds are characterized in terms of error probability and energy consumption. A power control protocol for the energy accumulation scenario is proposed and results show the enormous impact on improving the system performance, in terms of error probability and energy consumption. The numerical results corroborate the existence and uniqueness of an optimum target error probability, while showing that a relatively small battery could be a limiting factor for some setups, specially when using the energy accumulation strategy.
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitters rate matches the MolavianJazi-Laneman bound (2015) in its first- and second-order terms, improving the remaining terms to $frac12frac{log n}{n}+O left(frac 1 n right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of $K$ possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time $n_t$ that depends on the decoders estimate $t$ of the number of active transmitters $k$. Single-bit feedback from the decoder to all encoders at each potential decoding time $n_i$, $i leq t$, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.
In this paper, we present a finite-block-length comparison between the orthogonal multiple access (OMA) scheme and the non-orthogonal multiple access (NOMA) for the uplink channel. First, we consider the Gaussian channel, and derive the closed form expressions for the rate and outage probability. Then, we extend our results to the quasi-static Rayleigh fading channel. Our analysis is based on the recent results on the characterization of the maximum coding rate at finite block-length and finite block-error probability. The overall system throughput is evaluated as a function of the number of information bits, channel uses and power. We find what would be the respective values of these different parameters that would enable throughput maximization. Furthermore, we analyze the system performance in terms of reliability and throughput when applying the type-I ARQ protocol with limited number of retransmissions. The throughput and outage probability are evaluated for different blocklengths and number of information bits. Our analysis reveals that there is a trade-off between reliability and throughput in the ARQ. While increasing the number of retransmissions boosts reliability by minimizing the probability of reception error, it results in more delay which decreases the throughput. Nevertheless, the results show that NOMA always outperforms OMA in terms of throughput, reliability and latency regardless of the users priority or the number of retransmissions in both Gaussian and fading channels.
Effective Capacity (EC) indicates the maximum communication rate subject to a certain delay constraint while effective energy efficiency (EEE) denotes the ratio between EC and power consumption. In this paper, we analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in Rayleigh block fading channels as a function of power, error probability, and delay. We show the optimum power allocation strategy for maximizing the EEE in finite blocklength transmission which reveals that Shannons model underestimates the optimum power when compared to the exact finite blocklength model. Furthermore, we characterize the buffer constrained EEE maximization problem for different power consumption models. The results show that accounting for empty buffer probability (EBP) and extending the maximum delay tolerance jointly enhance the EC and EEE.