No Arabic abstract
Neural network models that are not conditioned on class identities were shown to facilitate knowledge transfer between classes and to be well-suited for one-shot learning tasks. Following this motivation, we further explore and establish such models and present a novel neural network architecture for the task of weakly supervised one-shot detection. Our model is only conditioned on a single exemplar of an unseen class and a larger target example that may or may not contain an instance of the same class as the exemplar. By pairing a Siamese similarity network with an attention mechanism, we design a model that manages to simultaneously identify and localise instances of classes unseen at training time. In experiments with datasets from the computer vision and audio domains, the proposed method considerably outperforms the baseline methods for the weakly supervised one-shot detection task.
Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to train object detectors using only the image-level category labels. However, without object-level labels, WSOD detectors are prone to detect bounding boxes on salient objects, clustered objects and discriminative object parts. Moreover, the image-level category labels do not enforce consistent object detection across different transformations of the same images. To address the above issues, we propose a Comprehensive Attention Self-Distillation (CASD) training approach for WSOD. To balance feature learning among all object instances, CASD computes the comprehensive attention aggregated from multiple transformations and feature layers of the same images. To enforce consistent spatial supervision on objects, CASD conducts self-distillation on the WSOD networks, such that the comprehensive attention is approximated simultaneously by multiple transformations and feature layers of the same images. CASD produces new state-of-the-art WSOD results on standard benchmarks such as PASCAL VOC 2007/2012 and MS-COCO.
While multitask and transfer learning has shown to improve the performance of neural networks in limited data settings, they require pretraining of the model on large datasets beforehand. In this paper, we focus on improving the performance of weakly supervised sound event detection in low data and noisy settings simultaneously without requiring any pretraining task. To that extent, we propose a shared encoder architecture with sound event detection as a primary task and an additional secondary decoder for a self-supervised auxiliary task. We empirically evaluate the proposed framework for weakly supervised sound event detection on a remix dataset of the DCASE 2019 task 1 acoustic scene data with DCASE 2018 Task 2 sounds event data under 0, 10 and 20 dB SNR. To ensure we retain the localisation information of multiple sound events, we propose a two-step attention pooling mechanism that provides a time-frequency localisation of multiple audio events in the clip. The proposed framework with two-step attention outperforms existing benchmark models by 22.3%, 12.8%, 5.9% on 0, 10 and 20 dB SNR respectively. We carry out an ablation study to determine the contribution of the auxiliary task and two-step attention pooling to the SED performance improvement.
Recently, deep neural networks have achieved remarkable performance on the task of object detection and recognition. The reason for this success is mainly grounded in the availability of large scale, fully annotated datasets, but the creation of such a dataset is a complicated and costly task. In this paper, we propose a novel method for weakly supervised object detection that simplifies the process of gathering data for training an object detector. We train an ensemble of two models that work together in a student-teacher fashion. Our student (localizer) is a model that learns to localize an object, the teacher (assessor) assesses the quality of the localization and provides feedback to the student. The student uses this feedback to learn how to localize objects and is thus entirely supervised by the teacher, as we are using no labels for training the localizer. In our experiments, we show that our model is very robust to noise and reaches competitive performance compared to a state-of-the-art fully supervised approach. We also show the simplicity of creating a new dataset, based on a few videos (e.g. downloaded from YouTube) and artificially generated data.
Significant progress has been made recently in developing few-shot object segmentation methods. Learning is shown to be successful in few-shot segmentation settings, using pixel-level, scribbles and bounding box supervision. This paper takes another approach, i.e., only requiring image-level label for few-shot object segmentation. We propose a novel multi-modal interaction module for few-shot object segmentation that utilizes a co-attention mechanism using both visual and word embedding. Our model using image-level labels achieves 4.8% improvement over previously proposed image-level few-shot object segmentation. It also outperforms state-of-the-art methods that use weak bounding box supervision on PASCAL-5i. Our results show that few-shot segmentation benefits from utilizing word embeddings, and that we are able to perform few-shot segmentation using stacked joint visual semantic processing with weak image-level labels. We further propose a novel setup, Temporal Object Segmentation for Few-shot Learning (TOSFL) for videos. TOSFL can be used on a variety of public video data such as Youtube-VOS, as demonstrated in both instance-level and category-level TOSFL experiments.
In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This setting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of $59.7%$ detection performance on the VOC test set and an mAP of $60.2%$ after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code: url{https://github.com/mikuhatsune/wsod_transfer}.