Do you want to publish a course? Click here

Binder migration during drying of lithium-ion battery electrodes: modelling and comparison to experiment

124   0   0.0 ( 0 )
 Added by Francesc Font
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The drying process is a crucial step in electrode manufacture as it can affect the component distribution within the electrode. Phenomena such as binder migration can have negative effects in the form of poor cell performance (e.g. capacity fade) or mechanical failure (e.g. electrode delamination from the current collector). We present a mathematical model that tracks the evolution of the binder concentration in the electrode during drying. Solutions to the model predict that low drying rates lead to a favourable homogeneous binder profile across the electrode film, whereas high drying rates result in an unfavourable accumulation of binder near the evaporation surface. These results show strong qualitative agreement with experimental observations and provide a cogent explanation for why fast drying conditions result in poorly performing electrodes. Finally, we provide some guidelines on how the drying process could be optimised to offer relatively short drying times whilst simultaneously maintaining a roughly homogeneous binder distribution.



rate research

Read More

Lithium titanium oxide Li$_4$Ti$_5$O$_{12}$ (LTO) is an intriguing anode material promising particularly long lived batteries, due to its remarkable phase stability during (dis)charging of the cell. However, its usage is limited by its low intrinsic electronic conductivity. Introducing oxygen vacancies can be one method to overcome this drawback, possibly by altering the charge carrier transport mechanism. We use Hubbard corrected density-functional theory (DFT+U) to show that polaronic states in combination with a possible hopping mechanism can play a crucial role in the experimentally observed increase of electronic conductivity. To gauge polaronic charge mobility, we compute relative stabilities of different localization patterns and estimate polaron hopping barrier heights. With this we finally show how defect engineering can indeed raise the electronic conductivity of LTO up to the level of its ionic conductivity, thereby explaining first experimental results for reduced LTO.
Excellent two-dimensional electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose ReN$_2$ monolayer as a superior two-dimensional material for sodium-ion batteries. Total-energy optimization results in a buckled tetragonal structure for ReN$_2$ monolayer, and our phonon spectrum and elastic moduli prove its dynamical and mechanical stability. Further investigation shows that it is metallic and still keep metallic feature after the adsorption of Na or K atoms, its lattice parameter changes by only 3.2% or 3.8% after absorption of Na or K atoms. Our study shows that its maximum capacity reaches 751 mA h/g for Na-ion batteries or 250 mA h/g for K-ion batteries, and its diffusion barrier is only 0.027 eV for Na atom or 0.127 eV for K atom. The small lattice change, high storage capacity, metallic feature, and extremely low ion diffusion barriers make the ReN$_2$ monolayer become superior electrode materials for Na-ion rechargeable batteries with ultrafast charging/discharging processes.
325 - Andrew Ulvestad 2018
Solid state battery technology has recently garnered considerable interest from companies including Toyota, BMW, Dyson, and others. The primary driver behind the commercialization of solid state batteries (SSBs) is to enable the use of lithium metal as the anode, as opposed to the currently used carbon anode, which would result in ~20% energy density improvement. However, no reported solid state battery to date meets all of the performance metrics of state of the art liquid electrolyte lithium ion batteries (LIBs) and indeed several solid state electrolyte (SSE) technologies may never reach parity with current LIBs. We begin with a review of state of the art LIBs, including their current performance characteristics, commercial trends in cost, and future possibilities. We then discuss current SSB research by focusing on three classes of solid state electrolytes: Sulfides, Polymers, and Oxides. We discuss recent and ongoing commercialization attempts in the SSB field. Finally, we conclude with our perspective and timeline for the future of commercial batteries.
Li-ion rechargeable batteries have enabled the wireless revolution transforming global communication. Future challenges, however, demands distributed energy supply at a level that is not feasible with the current energy-storage technology. New materials, capable of providing higher energy density are needed. Here we report a new class of lithium-ion batteries based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode, we demonstrate an optimal battery performance in terms of specific capacity, i.e. 165 mAhg-1, estimated energy density of about 190 Whkg-1 and life, with a stable operation for over 80 charge-discharge cycles. We link these unique properties to the graphene nanoflake anode displaying crystalline order and high uptake of lithium at the edges, as well as to its structural and morphological optimization in relation to the overall battery composition. Our approach, compatible with any printing technologies, is cheap and scalable and opens up new opportunities for the development of high-capacity Li-ion batteries.
Lithium-ion technologies are increasingly employed to electrify transportation and provide stationary energy storage for electrical grids, and as such their development has garnered much attention. However, their deployment is still relatively limited, and their broader adoption will depend on their potential for cost reduction and performance improvement. Understanding this potential can inform critical climate change mitigation strategies, including public policies and technology development efforts. However, many existing models of past cost decline, which often serve as starting points for forecasting models, rely on limited data series and measures of technological progress. Here we systematically collect, harmonize, and combine various data series of price, market size, research and development, and performance of lithium-ion technologies. We then develop representative series for these measures and employ performance curve models to estimate improvement rates. We also develop a method to incorporate additional performance characteristics into these models, including energy density and specific energy performance metrics. When energy density is incorporated into the definition of service provided by a lithium-ion cell, estimated technological improvement rates increase considerably, suggesting that previously reported improvement rates might underestimate the rate of lithium-ion technologies change. Moreover, our estimates suggest the degree to which lithium-ion technologies price decline might have been limited by performance requirements other than cost per energy capacity. These rates also suggest that battery technologies developed for stationary applications, where restrictions on volume and mass are relaxed, might achieve faster cost declines, though engineering-based mechanistic cost modeling is required to further characterize this potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا