Do you want to publish a course? Click here

Superior ionic and electronic properties of ReN$_2$ monolayers as Na-ion battery electrodes

49   0   0.0 ( 0 )
 Added by Bang-Gui Liu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Excellent two-dimensional electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose ReN$_2$ monolayer as a superior two-dimensional material for sodium-ion batteries. Total-energy optimization results in a buckled tetragonal structure for ReN$_2$ monolayer, and our phonon spectrum and elastic moduli prove its dynamical and mechanical stability. Further investigation shows that it is metallic and still keep metallic feature after the adsorption of Na or K atoms, its lattice parameter changes by only 3.2% or 3.8% after absorption of Na or K atoms. Our study shows that its maximum capacity reaches 751 mA h/g for Na-ion batteries or 250 mA h/g for K-ion batteries, and its diffusion barrier is only 0.027 eV for Na atom or 0.127 eV for K atom. The small lattice change, high storage capacity, metallic feature, and extremely low ion diffusion barriers make the ReN$_2$ monolayer become superior electrode materials for Na-ion rechargeable batteries with ultrafast charging/discharging processes.



rate research

Read More

It is highly desirable to search for promising two-dimensional (2D) monolayer materials for deep insight of 2D materials and applications. We use first-principles method to investigate tetragonal perovskite oxide monolayers as 2D materials. We find four stable 2D monolayer materials from SrTiO$_3$, LaAlO$_3$, KTaO$_3$, and BaFeO$_3$, denoting them as STO-ML, LAO-ML, KTO-ML, and BFO-ML. Our further study shows that through overcoming dangling bonds the first three monolayers are 2D wide-gap semiconducotors, and BFO-ML is a 2D isotropic Heisenberg ferromagnetic metal. There is a large electrostatic potential energy difference between the two sides, reflecting a large out-of-plane dipole, in each of the monolayers. These make a series of 2D monolayer materials, and should be useful in novel electronic devices considering emerging phenomena in perovskite oxide heterostructures.
The development of scalable techniques to make 2D material heterostructures is a major obstacle that needs to be overcome before these materials can be implemented in device technologies industrially. Electrodeposition is an industrially compatible deposition technique that offers unique advantages in scaling 2D heterostructures. In this work, we demonstrate the electrodeposition of atomic layers of WS$_2$ over graphene electrodes using a single source precursor. Using conventional microfabrication techniques, graphene was patterned to create micro-electrodes where WS$_2$ was site-selectively deposited to form 2D heterostructures. We used various characterisation techniques, including atomic force microscopy, transmission electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy to show that our electrodeposited WS$_2$ layers are highly uniform and can be grown over graphene at a controllable deposition rate. This technique to selectively deposit TMDCs over microfabricated graphene electrodes paves the way towards wafer-scale production of 2D material heterostructures for nanodevice applications.
In this work, we demonstrate the tunability of electronic properties of Si/SiO2 substrate by molecular and ionic surface modifications. The change in the electronic properties such as the work function (WF) and electron affinity (EA), were experimentally measured by contact potential difference (CPD) technique and theoretically supported by DFT calculations. We attribute these molecular electronic effects mainly to the variations of molecular and surface dipoles of the ionic and neutral species. We have previously showed that for the alkylhalide monolayers, changing the tail group from Cl to I decreased the work function of the substrate. Here we report on the opposite trend of WF changes, i.e. increase of the WF, obtained by using the anions of those halides from Cl$^{-}$ to I$^{-}$. This trend was observed on self-assembled alkylamonium halide (-NH3$^{+}$ X$^{-}$, where X$^{-}$=Cl$^{-}$, Br$^{-}$, I$^{-}$) monolayers modified substrates. The monolayer formation was supported by Ellipsometry measurements, X-Ray Photoelectron Spectroscopy and Atomic Force Microscopy. Comparison of the theoretical and experimental data suggests that ionic surface dipole depends mainly on the polarizability and the position of the counter halide anion along with the organization and packaging of the layer. The described ionic modification can be easily used for facile tailoring and design of the electronic properties Si/SiO2 substrates for various device applications.
The drying process is a crucial step in electrode manufacture as it can affect the component distribution within the electrode. Phenomena such as binder migration can have negative effects in the form of poor cell performance (e.g. capacity fade) or mechanical failure (e.g. electrode delamination from the current collector). We present a mathematical model that tracks the evolution of the binder concentration in the electrode during drying. Solutions to the model predict that low drying rates lead to a favourable homogeneous binder profile across the electrode film, whereas high drying rates result in an unfavourable accumulation of binder near the evaporation surface. These results show strong qualitative agreement with experimental observations and provide a cogent explanation for why fast drying conditions result in poorly performing electrodes. Finally, we provide some guidelines on how the drying process could be optimised to offer relatively short drying times whilst simultaneously maintaining a roughly homogeneous binder distribution.
The geometrical and electronic properties of the monolayer (ML) of tetracene (Tc) molecules on Ag(111) are systematically investigated by means of DFT calculations with the use of localized basis set. The bridge and hollow adsorption positions of the molecule in the commensurate $gamma$-Tc/Ag(111) are revealed to be the most stable and equally favorable irrespective to the approximation chosen for the exchange-correlation functional. The binding energy is entirely determined by the long-range dispersive interaction. The former lowest unoccupied orbital remains being unoccupied in the case of $gamma$-Tc/Ag(111) as well as in the $alpha$-phase with increased coverage. The unit cell of the $alpha$-phase with point-on-line registry was adapted for calculations based on the available experimental data and the computed structures of the $gamma$-phase. The calculated position of the Tc/Ag(111) interface state is found to be noticeably dependent on the lattice constant of the substrate, however its energy shift with respect to the Shockley surface state of the unperturbed clean side of the slab is sensitive only to the adsorption distance and in good agreement with the experimentally measured energy shift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا