Do you want to publish a course? Click here

Secondary instabilities in the flow past a cylinder: insights from a local stability analysis

384   0   0.0 ( 0 )
 Added by Manikandan Mathur
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a three-dimensional, short-wavelength stability analysis on the numerically simulated two-dimensional flow past a circular cylinder for Reynolds numbers in the range $50le Rele300$; here, $Re = U_{infty}D/ u$ with $U_infty$, $D$ and $ u$ being the free-stream velocity, the diameter of the cylinder and the kinematic viscosity of the fluid, respectively. For a given $Re$, inviscid local stability equations from the geometric optics approach are solved on three distinct closed fluid particle trajectories (denoted as orbits 1, 2 & 3) for purely transverse perturbations. The inviscid instability on orbits 1 & 2, which are symmetric counterparts of one another, is shown to undergo bifurcations at $Reapprox50$ and $Reapprox250$. Upon incorporating finite-wavenumber, finite-Reynolds number effects to compute corrected local instability growth rates, the inviscid instability on orbits 1 & 2 is shown to be suppressed for $Relesssim262$. Orbits 1 & 2 are thus shown to exhibit a synchronous instability for $Regtrsim262$, which is remarkably close to the critical Reynolds number for the mode-B secondary instability. Further evidence for the connection between the local instability on orbits 1 & 2, and the mode-B secondary instability, is provided via a comparison of the growth rate variation with span-wise wavenumber between the local and global stability approaches. In summary, our results strongly suggest that the three-dimensional short-wavelength instability on orbits 1 & 2 is a possible mechanism for the emergence of the mode B secondary instability.



rate research

Read More

Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displacements. Analytical expressions and numerical results in this work provide useful insights into the hydrodynamics of colloidal solids and macromolecules in confinement.
A cylinder undergoes precession when it rotates around its axis and this axis itself rotates around another direction. In a precessing cylinder full of fluid, a steady and axisymmetric component of the azimuthal flow is generally present. This component is called a zonal flow. Although zonal flows have been often observed in experiments and numerical simulations, their origin has eluded theoretical approaches so far. Here, we develop an asymptotic analysis to calculate the zonal flow forced in a resonant precessing cylinder, that is when the harmonic response is dominated by a single Kelvin mode. We find that the zonal flow originates from three different sources: (1) the nonlinear interaction of the inviscid Kelvin mode with its viscous correction; (2) the steady and axisymmetric response to the nonlinear interaction of the Kelvin mode with itself; and (3) the nonlinear interactions in the end boundary layers. In a precessing cylinder, two additional sources arise due to the equatorial Coriolis force and the forced shear flow. However, they cancel exactly. The study thus generalises to any Kelvin mode, forced by precession or any other mechanism. The present theoretical predictions of the zonal flow are confirmed by comparison with numerical simulations and experimental results. We also show numerically that the zonal flow is always retrograde in a resonant precessing cylinder (m=1) or when it results from resonant Kelvin modes of azimuthal wavenumbers m=2, 3, and presumably higher.
A Direct Numerical Simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimarelli et al (2018), and intends to contribute to a solid numerical benchmark, albeit at a relatively low value of the Reynolds number. The study differentiates from previous work by using an in-house finite-differences solver instead of the finite-volumes toolbox OpenFOAM, and by employing finer spatial discretization and longer temporal average. The main features of the flow are described, and quantitative differences with the existing results are highlighted. The complete set of terms appearing in the budget equation for the components of the Reynolds stress tensor is provided for the first time. The different regions of the flow where production, redistribution and dissipation of each component take place are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such information is valuable for the verification and fine-tuning of turbulence models in this complex separating and reattaching flow.
We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using simulations of the Gross--Pitaevskii equation we find striking similarities to viscous flows: from production of starting vortices to convergence of airfoil circulation onto a quantized version of the Kutta-Joukowski circulation. We predict the number of quantized vortices nucleated by a given foil via a phenomenological argument. We further find stall-like behavior governed by airfoil speed, not angle of attack, as in classical flows. Finally we analyze the lift and drag acting on the airfoil.
We investigate the role of intense vortical structures, similar to those in a turbulent flow, in enhancing collisions (and coalescences) which lead to the formation of large aggregates in particle-laden flows. By using a Burgers vortex model, we show, in particular, that vortex stretching significantly enhances sharp inhomogeneities in spatial particle densities, related to the rapid ejection of particles from intense vortices. Furthermore our work shows how such spatial clustering leads to an enhancement of collision rates and extreme statistics of collisional velocities. We also study the role of poly-disperse suspensions in this enhancement. Our work uncovers an important principle which, {if valid for realistic turbulent flows, may be a factor in} how small nuclei water droplets in warm clouds can aggregate to sizes large enough to trigger rain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا