No Arabic abstract
A Direct Numerical Simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimarelli et al (2018), and intends to contribute to a solid numerical benchmark, albeit at a relatively low value of the Reynolds number. The study differentiates from previous work by using an in-house finite-differences solver instead of the finite-volumes toolbox OpenFOAM, and by employing finer spatial discretization and longer temporal average. The main features of the flow are described, and quantitative differences with the existing results are highlighted. The complete set of terms appearing in the budget equation for the components of the Reynolds stress tensor is provided for the first time. The different regions of the flow where production, redistribution and dissipation of each component take place are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such information is valuable for the verification and fine-tuning of turbulence models in this complex separating and reattaching flow.
We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value of such events explains their negligible contribution to the commonly computed statistics; however, the very existence of a difference in the PDF demonstrates that the forcing term is not entirely uninfluential. Other statistics for wall-based quantities (the two components of friction and pressure) are examined; in particular spatio-temporal autocorrelations show small differences at large temporal separations, where unfortunately the residual statistical uncertainty is still of the same order of the observed difference. Hence we suggest that the specific choice of the forcing term does not produce important statistical consequences, unless one is interested in the strongest events of high wall friction, that are underestimated by a simulation run at constant flow rate.
Air cavities, i.e. air layers developed behind cavitators, are seen as a promising drag reducing method in the maritime industry. Here we utilize the Taylor-Couette (TC) geometry, i.e. the flow between two concentric, independently rotating cylinders, to study the effect of air cavities in this closed setup, which is well-accessible for drag measurements and optical flow visualizations. We show that stable air cavities can be formed, and that the cavity size increases with Reynolds number and void fraction. The streamwise cavity length strongly depends on the axial position due to buoyancy forces acting on the air. Strong secondary flows, which are introduced by a counter-rotating outer cylinder, clearly decrease the stability of the cavities, as air is captured in the Taylor rolls rather than in the cavity. Surprisingly, we observed that local air injection is not necessary to sustain the air cavities; as long as air is present in the system it is found to be captured in the cavity. We show that the drag is decreased significantly as compared to the case without air, but with the geometric modifications imposed on the TC system by the cavitators. As the void fraction increases, the drag of the system is decreased. However, the cavitators itself significantly increase the drag due to their hydrodynamic resistance (pressure drag): In fact, a net drag increase is found when compared to the standard smooth-wall TC case. Therefore, one must first overcome the added drag created by the cavitators before one obtains a net drag reduction.
The turbulent flow in an infinitely extended plane channel is analysed by solving the Navier-Stokes equations with a DNS approach. Solutions are obtained in a numerical solution domain of finite size in the streamwise as well as in the lateral direction setting periodic boundary conditions in both directions. Their impact on large scale structures in the turbulent flow field is analysed carefully in order to avoid their suppression. When this is done appropriately well known stripe patterns in these flows can be observed and analysed especially with respect to their relative motion compared to the mean flow velocity. Various details of this stripe pattern dominated velocity field are shown. Also global parameters like the friction factor in the flow field and the Nusselt number in the temperature field are determined based on the statistics of the flow and temperature data in a very large time period that guarantees fully developed turbulent flow and heat transfer.
Turbulence structure in the quasi-linear restricted nonlinear (RNL) model is analyzed and compared with DNS of turbulent Poiseuille flow at Reynolds number R=1650. The turbulence structure is obtained by POD analysis of the two components of the flow partition used in formulating the RNL model: the streamwise-mean flow and the associated perturbations. The dominant structures are found to be similar in RNL simulations and DNS despite the neglect of perturbation-perturbation nonlinearity in the RNL formulation. POD analysis of the streamwise-mean flow indicates that the dominant structure in both RNL and DNS is a coherent roll-streak structure in which the roll is collocated with the streak in a manner configured to reinforce the streak by the lift-up process. This mechanism of roll-streak maintenance accords with analytical predictions made using the second order statistical state dynamics (SSD) model, referred to as S3T, which shares with RNL the dynamical restriction of neglecting the perturbation-perturbation nonlinearity. POD analysis of perturbations from the streamwise-mean streak reveals that similar structures characterize these perturbations in both RNL and DNS. The perturbation to the low-speed streak POD are shown to have the form of oblique waves collocated with the streak that can be identified with optimally growing structures on the streak. Given that the mechanism sustaining turbulence in RNL has been analytically characterized, this close correspondence between the streamwise-mean and perturbation structures in RNL and DNS supports the conclusion that the self-sustaining mechanism in DNS is the same as that in RNL.
Recent studies of rotating Rayleigh-Benard convection at high rotation rates and strong thermal forcing have shown a significant discrepancy in total heat transport between experiments on a confined cylindrical domain on the one hand and simulations on a laterally unconfined periodic domain on the other. This paper addresses this discrepancy using direct numerical simulations on a cylindrical domain. An analysis of the flow field reveals a region of enhanced convection near the wall, the sidewall circulation. The sidewall circulation rotates slowly within the cylinder in anticyclonic direction. It has a convoluted structure, illustrated by mean flow fields in horizontal cross-sections of the flow where instantaneous snapshots are compensated for the orientation of the sidewall circulation before averaging. Through separate analysis of the sidewall region and the inner bulk flow, we find that for higher values of the thermal forcing the heat transport in the inner part of the cylindrical domain, outside the sidewall circulation region, coincides with the heat transport on the unconfined periodic domain. Thus the sidewall circulation accounts for the differences in heat transfer between the two considered domains, while in the bulk the turbulent heat flux is the same as that of a laterally unbounded periodic domain. Therefore, experiments, with their inherent confinement, can still provide turbulence akin to the unbounded domains of simulations, and at more extreme values of the governing parameters for thermal forcing and rotation. We also provide experimental evidence for the existence of the sidewall circulation that is in close agreement with the simulation results.