Do you want to publish a course? Click here

Lower bounds for the index of compact constant mean curvature surfaces in $mathbb R^{3}$ and $mathbb S^{3}$

96   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $M$ be a compact constant mean curvature surface either in $mathbb{S}^3$ or $mathbb{R}^3$. In this paper we prove that the stability index of $M$ is bounded below by a linear function of the genus. As a by product we obtain a comparison theorem between the spectrum of the Jacobi operator of $M$ and those of Hodge Laplacian of $1$-forms on $M$.



rate research

Read More

Given $Hin [0,1)$ and given a $C^0$ exterior domain $Omega$ in a $H-$hypersphere of $mathbb{H}^3,$ the existence of hyperbolic Killing graphs of CMC $H$ defined in $overline{Omega}$ with boundary $ partial Omega $ included in the $H-$hypersphere is obtained.
We establish curvature estimates and a convexity result for mean convex properly embedded $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^3$, i.e., $varphi$-minimal surfaces when $varphi$ depends only on the third coordinate of $mathbb{R}^3$. Led by the works on curvature estimates for surfaces in 3-manifolds, due to White for minimal surfaces, to Rosenberg, Souam and Toubiana, for stable CMC surfaces, and to Spruck and Xiao for stable translating solitons in $mathbb{R}^3$, we use a compactness argument to provide curvature estimates for a family of mean convex $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^{3}$. We apply this result to generalize the convexity property of Spruck and Xiao for translating solitons. More precisely, we characterize the convexity of a properly embedded $[varphi,vec{e}_{3}]$-minimal surface in $mathbb{R}^{3}$ with non positive mean curvature when the growth at infinity of $varphi$ is at most quadratic.
We prove a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of $mathbb{R}^{3}_{raisepunct{.}}$ We also show that any minimal hypersurface immersed with bounded curvature in $Mtimes R_+$ equals some $Mtimes {s}$ provided $M$ is a complete, recurrent $n$-dimensional Riemannian manifold with $text{Ric}_M geq 0$ and whose sectional curvatures are bounded from above. For $H$-surfaces we prove that a stochastically complete surface $M$ can not be in the mean convex side of a $H$-surface $N$ embedded in $R^3$ with bounded curvature if $sup vert H_{_M}vert < H$, or ${rm dist}(M,N)=0$ when $sup vert H_{_M}vert = H$. Finally, a maximum principle at infinity is shown assuming $M$ has non-empty boundary.
In this paper, we consider compact free boundary constant mean curvature surfaces immersed in a mean convex body of the Euclidean space or in the unit sphere. We prove that the Morse index is bounded from below by a linear function of the genus and number of boundary components.
145 - Zejun Hu , Zeke Yao , Xi Zhang 2019
Each hypersurface of a nearly Kahler manifold is naturally equipped with two tensor fields of $(1,1)$-type, namely the shape operator $A$ and the induced almost contact structure $phi$. In this paper, we show that, in the homogeneous NK $mathbb{S}^6$ a hypersurface satisfies the condition $Aphi+phi A=0$ if and only if it is totally geodesic; moreover, similar as for the non-flat complex space forms, the homogeneous nearly Kahler manifold $mathbb{S}^3timesmathbb{S}^3$ does not admit a hypersurface that satisfies the condition $Aphi+phi A=0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا