Do you want to publish a course? Click here

Mean convex properly embedded $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^3$

79   0   0.0 ( 0 )
 Added by Antonio Martinez
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We establish curvature estimates and a convexity result for mean convex properly embedded $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^3$, i.e., $varphi$-minimal surfaces when $varphi$ depends only on the third coordinate of $mathbb{R}^3$. Led by the works on curvature estimates for surfaces in 3-manifolds, due to White for minimal surfaces, to Rosenberg, Souam and Toubiana, for stable CMC surfaces, and to Spruck and Xiao for stable translating solitons in $mathbb{R}^3$, we use a compactness argument to provide curvature estimates for a family of mean convex $[varphi,vec{e}_{3}]$-minimal surfaces in $mathbb{R}^{3}$. We apply this result to generalize the convexity property of Spruck and Xiao for translating solitons. More precisely, we characterize the convexity of a properly embedded $[varphi,vec{e}_{3}]$-minimal surface in $mathbb{R}^{3}$ with non positive mean curvature when the growth at infinity of $varphi$ is at most quadratic.



rate research

Read More

232 - Jiuzhou Huang , Jiawei Liu 2021
In this paper, we establish the existence and uniqueness of Ricci flow that admits an embedded closed convex surface in $mathbb{R}^3$ as metric initial condition. The main point is a family of smooth Ricci flows starting from smooth convex surfaces whose metrics converge uniformly to the metric of the initial surface in intrinsic sense.
Let $M$ be a compact constant mean curvature surface either in $mathbb{S}^3$ or $mathbb{R}^3$. In this paper we prove that the stability index of $M$ is bounded below by a linear function of the genus. As a by product we obtain a comparison theorem between the spectrum of the Jacobi operator of $M$ and those of Hodge Laplacian of $1$-forms on $M$.
We prove a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of $mathbb{R}^{3}_{raisepunct{.}}$ We also show that any minimal hypersurface immersed with bounded curvature in $Mtimes R_+$ equals some $Mtimes {s}$ provided $M$ is a complete, recurrent $n$-dimensional Riemannian manifold with $text{Ric}_M geq 0$ and whose sectional curvatures are bounded from above. For $H$-surfaces we prove that a stochastically complete surface $M$ can not be in the mean convex side of a $H$-surface $N$ embedded in $R^3$ with bounded curvature if $sup vert H_{_M}vert < H$, or ${rm dist}(M,N)=0$ when $sup vert H_{_M}vert = H$. Finally, a maximum principle at infinity is shown assuming $M$ has non-empty boundary.
We establish a uniqueness result for the $[varphi,vec{e}_{3}]$-catenary cylinders by their asymptotic behaviour. Well known examples of such cylinders are the grim reaper translating solitons for the mean curvature flow. For such solitons, F. Martin, J. Perez-Garcia, A. Savas-Halilaj and K. Smoczyk proved that, if $Sigma$ is a properly embedded translating soliton with locally bounded genus, and $mathcal{C}^{infty}$-asymptotic to two vertical planes outside a cylinder, then $Sigma$ must coincide with some grim reaper translating soliton. In this paper, applying the moving plane method of Alexandrov together with a strong maximum principle for elliptic operators, we increase the family of $[varphi,vec{e}_{3}]$-minimal graphs where these types of results hold under different assumption of asymptotic behaviour.
The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an isometry in the following sense: it preserves the metric coefficients introduced previously by Bobenko and Suris for isothermic nets. Exactly as in the smooth case, this is a correspondence between nets with the same Lax matrices, and the immersion formulas also coincide with the smooth case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا