No Arabic abstract
Each hypersurface of a nearly Kahler manifold is naturally equipped with two tensor fields of $(1,1)$-type, namely the shape operator $A$ and the induced almost contact structure $phi$. In this paper, we show that, in the homogeneous NK $mathbb{S}^6$ a hypersurface satisfies the condition $Aphi+phi A=0$ if and only if it is totally geodesic; moreover, similar as for the non-flat complex space forms, the homogeneous nearly Kahler manifold $mathbb{S}^3timesmathbb{S}^3$ does not admit a hypersurface that satisfies the condition $Aphi+phi A=0$.
In this paper, extending our previous joint work (Hu et al., Math Nachr 291:343--373, 2018), we initiate the study of Hopf hypersurfaces in the homogeneous NK (nearly Kahler) manifold $mathbf{S}^3timesmathbf{S}^3$. First, we show that any Hopf hypersurface of the homogeneous NK $mathbf{S}^3timesmathbf{S}^3$ does not admit two distinct principal curvatures. Then, for the important class of Hopf hypersurfaces with three distinct principal curvatures, we establish a complete classification under the additional condition that their holomorphic distributions ${U}^perp$ are preserved by the almost product structure $P$ of the homogeneous NK $mathbf{S}^3timesmathbf{S}^3$.
Let $M$ be a compact constant mean curvature surface either in $mathbb{S}^3$ or $mathbb{R}^3$. In this paper we prove that the stability index of $M$ is bounded below by a linear function of the genus. As a by product we obtain a comparison theorem between the spectrum of the Jacobi operator of $M$ and those of Hodge Laplacian of $1$-forms on $M$.
In this article we complete the classification of the umbilical submanifolds of a Riemannian product of space forms, addressing the case of a conformally flat product $mathbb{H}^ktimes mathbb{S}^{n-k+1}$, which has not been covered in previous works on the subject. We show that there exists precisely a $p$-parameter family of congruence classes of umbilical submanifolds of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$ with substantial codimension~$p$, which we prove to be at most $mbox{min},{k+1, n-k+2}$. We study more carefully the cases of codimensions one and two and exhibit, respectively, a one-parameter family and a two-parameter family (together with three extra one-parameter families) that contain precisely one representative of each congruence class of such submanifolds. In particular, this yields another proof of the classification of all (congruence classes of) umbilical submanifolds of $mathbb{S}^ntimes mathbb{R}$, and provides a similar classification for the case of $mathbb{H}^ntimes mathbb{R}$. We determine all possible topological types, actually, diffeomorphism types, of a complete umbilical submanifold of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$. We also show that umbilical submanifolds of the product model of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$ can be regarded as rotational submanifolds in a suitable sense, and explicitly describe their profile curves when $k=n$. As a consequence of our investigations, we prove that every conformal diffeomorphism of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$ onto itself is an isometry.
The kink Casimir effect in the massive non-linear $S^3$-sigma model is analyzed.
We study confining strings in ${cal{N}}=1$ supersymmetric $SU(N_c)$ Yang-Mills theory in the semiclassical regime on $mathbb{R}^{1,2} times mathbb{S}^1$. Static quarks are expected to be confined by double strings composed of two domain walls - which are lines in $mathbb{R}^2$ - rather than by a single flux tube. Each domain wall carries part of the quarks chromoelectric flux. We numerically study this mechanism and find that double-string confinement holds for strings of all $N$-alities, except for those between fundamental quarks. We show that, for $N_c ge 5$, the two domain walls confining unit $N$-ality quarks attract and form non-BPS bound states, collapsing to a single flux line. We determine the $N$-ality dependence of the string tensions for $2 le N_c le 10$. Compared to known scaling laws, we find a weaker, almost flat $N$-ality dependence, which is qualitatively explained by the properties of BPS domain walls. We also quantitatively study the behavior of confining strings upon increasing the $mathbb{S}^1$ size by including the effect of virtual $W$-bosons and show that the qualitative features of double-string confinement persist.