Do you want to publish a course? Click here

Linking Types for Multi-Language Software: Have Your Cake and Eat It Too

339   0   0.0 ( 0 )
 Added by Daniel Patterson
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Software developers compose systems from components written in many different languages. A business-logic component may be written in Java or OCaml, a resource-intensive component in C or Rust, and a high-assurance component in Coq. In this multi-language world, program execution sends values from one linguistic context to another. This boundary-crossing exposes values to contexts with unforeseen behavior---that is, behavior that could not arise in the source language of the value. For example, a Rust function may end up being applied in an ML context that violates the memory usage policy enforced by Rusts type system. This leads to the question of how developers ought to reason about code in such a multi-language world where behavior inexpressible in one language is easily realized in another. This paper proposes the novel idea of linking types to address the problem of reasoning about single-language components in a multi-lingual setting. Specifically, linking types allow programmers to annotate where in a program they can link with components inexpressible in their unadulterated language. This enables developers to reason about (behavioral) equality using only their own language and the annotations, even though their code may be linked with code written in a language with more expressive power.

rate research

Read More

115 - L. Besnard , T. Gautier , J. Ouy 2010
The SPaCIFY project, which aims at bringing advances in MDE to the satellite flight software industry, advocates a top-down approach built on a domain-specific modeling language named Synoptic. In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic features hierarchical decomposition of application and control modules in synchronous block diagrams and state machines. Its semantics is described in the polychronous model of computation, which is that of the synchronous language Signal.
The Message Passing Interface (MPI) framework is widely used in implementing imperative pro- grams that exhibit a high degree of parallelism. The PARTYPES approach proposes a behavioural type discipline for MPI-like programs in which a type describes the communication protocol followed by the entire program. Well-typed programs are guaranteed to be exempt from deadlocks. In this paper we describe a type inference algorithm for a subset of the original system; the algorithm allows to statically extract a type for an MPI program from its source code.
While traditional corpus-level evaluation metrics for machine translation (MT) correlate well with fluency, they struggle to reflect adequacy. Model-based MT metrics trained on segment-level human judgments have emerged as an attractive replacement due to strong correlation results. These models, however, require potentially expensive re-training for new domains and languages. Furthermore, their decisions are inherently non-transparent and appear to reflect unwelcome biases. We explore the simple type-based classifier metric, MacroF1, and study its applicability to MT evaluation. We find that MacroF1 is competitive on direct assessment, and outperforms others in indicating downstream cross-lingual information retrieval task performance. Further, we show that MacroF1 can be used to effectively compare supervised and unsupervised neural machine translation, and reveal significant qualitative differences in the methods outputs.
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Ruttens behavioural differential equations. We introduce a program logic with L{o}b induction for reasoning about the contextual equivalence of programs.
We present a type system for strategy languages that express program transformations as compositions of rewrite rules. Our row-polymorphic type system assists compiler engineers to write correct strategies by statically rejecting non meaningful compositions of rewrites that otherwise would fail during rewriting at runtime. Furthermore, our type system enables reasoning about how rewriting transforms the shape of the computational program. We present a formalization of our language at its type system and demonstrate its practical use for expressing compiler optimization strategies. Our type system builds the foundation for many interesting future applications, including verifying the correctness of program transformations and synthesizing program transformations from specifications encoded as types.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا